
Highlights

Almost Proportional Allocations of Indivisible Chores:
Computation, Approximation and Efficiency1

Haris Aziz?, Bo Li#, Hervé Moulin†, Xiaowei Wu‡, Xinran Zhu?

?UNSW Sydney, haris.aziz@unsw.edu.au, zxrzita@gmail.com
#The Hong Kong Polytechnic University, comp-bo.li@polyu.edu.hk
†University of Glasgow, herve.moulin@glasgow.ac.uk
‡University of Macau, xiaoweiwu@um.edu.mo

• We design algorithms to compute PROPX allocations for indivisible
chores when the agents have asymmetric weights.

• We design algorithms, which only access the agents’ ordinal preferences,
to compute approximate PROPX allocations.

• We prove the incompatibility of PROPX and Pareto optimality and
identify some special cases when a Pareto optimal and PROPX alloca-
tion exists.

1Some results have appeared in The ACM Web Conference 2022 (WWW’22) [52].

Almost Proportional Allocations of Indivisible Chores:

Computation, Approximation and Efficiency1

Haris Aziz?, Bo Li#, Hervé Moulin†, Xiaowei Wu‡, Xinran Zhu?

?UNSW Sydney, haris.aziz@unsw.edu.au, zxrzita@gmail.com
#The Hong Kong Polytechnic University, comp-bo.li@polyu.edu.hk

†University of Glasgow, herve.moulin@glasgow.ac.uk
‡University of Macau, xiaoweiwu@um.edu.mo

Abstract

Proportionality (PROP) is one of the simplest and most intuitive fairness
criteria used for allocating items among agents with additive utilities. How-
ever, when the items are indivisible, ensuring PROP becomes unattainable,
leading to increased focus on its relaxations. In this paper, we focus on the
relaxation of proportionality up to any item (PROPX), where proportional-
ity is satisfied if an arbitrary item is removed from every agent’s allocation.
We show that PROPX is an appealing fairness notion for the allocation of
indivisible chores, which approximately implies some share-based notions,
such as maximin share (MMS) and AnyPrice share (APS). We further pro-
vide a comprehensive understanding of PROPX allocations, regarding the
computation, approximation, and compatibility with efficiency. On top of
these, we extend the study to scenarios where agents do not share equal lia-
bility towards the chores, and approximate PROPX allocations using partial
information about agents’ utilities.

Keywords: Indivisible Chores, PROPX, Ordinal Preferences, Pareto
Optimality

1Some results have appeared in The ACM Web Conference 2022 (WWW’22) [52].

Preprint submitted to Artificial Intelligence Journal September 19, 2023

1. Introduction

Proportionality (PROP), formally introduced 75 years ago by the mathe-
matician Steinhaus [57] to divide a non atomic cake – or any other infinitely
divisible item like land, clean water or money – is the simplest and most
intuitive test of fairness: my share should be worth at least 1

n
-th of the

total value of the cake I am sharing with n − 1 other participants; this is
the best worst-case share that can be secured simultaneously for everyone.
Fast forwarding to the 21st century, a growing literature developed mostly
by computer scientists together with mathematicians, economists, and other
social scientists, focuses on the fair moneyless allocation of indivisible items,
such as jobs, offices, seats in school, or immigration visas [54, 3]. Provid-
ing each agent with a reasonably high worst-case share remains a central
fairness concern, but PROP is no longer feasible in its pristine form as we
see when trying to divide one diamond and several worthless rocks: only an
approximate version of PROP will work.

Most of the attention turned instead to the intuitive and elegant concept
of the maximin share (MMS) guarantee [28]: the worth of my least valuable
share in the best n-partition of the objects I can choose. But MMS is not
always feasible either2 and it too must be approximated; moreover, unlike
PROP or its two approximations below, the MMS test (or its factor approxi-
mation [1, 2, 49]) is not practical because recognizing that a given allocation
of the items passes the test requires the NP-hard task of computing the MMS
utility.

The first approximation of the PROP test, written as PROP1 [34], is
relatively weak as we explain below. For the allocation of goods (desirable
items that can be freely disposed of), it says that every agent’s share achieves
the original proportionality after adding one carefully chosen item outside the
agent’s share. For the allocation of chores (also known as bads, that generate
disutility and cannot be discarded), the same obtains by subtracting one
well-chosen item from the share. In both cases PROP1 is compatible with
an efficient (Pareto optimal) division of the items [21, 11]. The weakness is
that PROP1 follows from the substantially stronger property EF1, i.e., the
similar approximation of the powerful envy freeness test3 by adding a good

2Although the instances proving this are considerably more complex than the diamond
and rocks example: [51, 12, 38].

3I prefer my share to the share of any other agent.

2

or subtracting a chore [53]. So for goods, EF1 overshadows PROP1 because
it is also compatible with efficiency [31, 21] and equally easy to verify. For
chores, the compatibility between EF1 and efficiency remains unknown and
turns out to be a challenging problem [35, 40, 41].

The next approximation, PROPX is the considerably stronger require-
ment that we achieve PROP by adding any good outside the agent’s share or
subtracting any chore from this share. Also, when we divide goods a PROPX
allocation may not exist even in fairly simple problems.4 Surprisingly the sit-
uation is much more favorable for chores, where PROPX allocations always
exist and can be computed by fairly simple algorithms [54, 52]. The goal of
this paper is to deepen our understanding of PROPX which we regard as one
of the most appealing fairness requirements for the allocation of indivisible
chores among agents endowed with additive utilities.

We also discuss two variants of this standard model. In the first one
agents do not have the same liability toward chores; for example, people
in leadership positions versus lower-level employees in a company, teaching
obligations differ for university staff with different status and countries have
different responsibilities to reduce CO2 emissions based on their populations
or past actions. This is referred to as the asymmetric or weighted setting
in our work. Weighted fairness has been well justified since the 1990s in
the context of the cake-cutting problem [56], and is recently adapted to the
relaxations of EF [32, 58] and MMS [36, 9]. Next, we note that in practical
applications with a large number of agents and/or chores, we do not expect all
agents to form full-fledged cardinal evaluations of these items, to say nothing
of the potential computational complexity due to the large sizes, therefore it
is important to adapt the analysis based on partial information such as the
ordinal ranking of the chores. Then our problem is to investigate the extent
we are able to approximate PROPX using partial information.

1.1. Main Results

We study the problem of allocating m indivisible chores to n agents, where
each agent i has an obligation si ≥ 0 on the share of chores she needs to finish,
and s1+· · ·+sn = 1. Based on whether all agents have share 1/n, we call them
symmetric (unweighted) or asymmetric (weighted). Informally, an allocation

4A simple example has 3 agents with identical utilities (3, 3, 3, 3, 1) over five goods,
where one of the three agents must have value no greater than 3 but her proportional
share is 13

3 > 3.

3

is called PROPX if for any agent, by removing an arbitrary item from her
bundle, her cost is no more than her share in the system. We argue that for
indivisible chores, PROPX may be a more reliable relaxation of (weighted)
proportionality than MMS and APS, where the definition of APS is deferred
to Definition 4.2. This is because the existence of MMS/APS allocations
is not guaranteed even with three symmetric agents. However, we show
that (weighted) PROPX allocations always exist. Moreover, any (weighted)
PROPX allocation ensures 2-approximation of MMS for symmetric agents
and of APS for asymmetric agents; however, an arbitrary MMS or APS
allocation can be as bad as Θ(n)-approximation regarding PROPX.

As a warm-up, we first show that the top-trading envy-cycle elimination
[26] algorithm computes a PROPX allocation when the agents are symmet-
ric when the agents have the same ordinal preference for the items (which is
named IDO instances in [48], short for identical ordering). Using the tech-
niques from [27, 19, 48], the algorithm can be converted to handle general
non-IDO instances easily. Then we move to the general case when the agents
have arbitrary shares. Our algorithm bid-and-take takes the efficiency of the
allocation into consideration – each item, from the highest to the lowest cost,
is allocated to the agent who has the smallest cost on that item.

Result 1 (Lemma 4.2 and Theorem 4.1). The allocation returned by the
bid-and-take algorithm is (weighted) PROPX and 2-approximate APS.

Algorithm bid-and-take actually guarantees the tight approximation ratio
to the optimal social cost subject to the (weighted) PROPX constraint, i.e.,
the price of fairness [25, 30]. In the appendix, we show that the tight bound
for the price of fairness regarding PROPX is Θ(n) for the unweighted case,
Θ(m) for the weighted IDO case and unbounded for the weighted case.

Following the recent works on the partial information setting [5, 43, 10],
we study the problem of designing algorithms that only use agents’ ordinal
preferences without exact cardinal values. The intuition behind our algo-
rithms (see Algorithms 3 and 4) is as follows. We partition agents into two
sets so that each agent in the first set gets a single but large item, then a stan-
dard algorithm, such as the (weighted) round-robin, is called on the agents in
the second half to evenly allocate the remaining small items. Although the
idea of splitting agents into two parts looks artificial, the approximation ratio
turns out to be optimal. A by-product result in this part is that weighted
EF1 allocations exist for IDO instances.

Result 2 (Lemma 5.1 and Theorem 5.2). With ordinal preferences, our al-

4

gorithms achieve 2-approximate (weighted) PROPX for both symmetric and
asymmetric agents. Moreover, the approximation ratio is optimal: no algo-
rithm can achieve a better-than-2 approximation using only ordinal informa-
tion, even for symmetric agents.

Last but not least, we investigate the compatibility between PROPX and
Pareto optimality (PO). We first prove that PROPX and PO are not com-
patible when there are items that are zero-valued by some agents. When
all items are positively valued by all agents5, PROPX and fPO are still not
compatible, in contrast with [11] where fPO and PROP1 allocations exist
for chores. We then identify some cases where we can obtain PROPX and
PO allocations: (1) two agents with any additive valuations and symmetric
weights, and (2) any number of agents with lexicographic or bi-valued val-
uations, even if agents may have asymmetric weights. The instances when
agents have lexicographic valuations have been widely considered in the liter-
ature [22, 46, 7, 47]. The case when agents have bi-valued utility functions [4]
is also one of the most well-studied restricted cases of the fair division prob-
lem. Our result aligns with [35, 40] which shows the compatibility of EF1 and
PO under bi-valued valuations. As justified therein, the study of bi-valued
valuations is of practical interest since reporting exact numerical utilities
can be cumbersome for agents in many real-world scenarios. We leave the
compatibility between PROPX and PO when the valuations are generally
additive and all items have positive costs by all agents as an open problem.

Result 3 (Theorem 6.1, Propositions 6.2 and 6.3). PROPX and PO are
not compatible in general. If all items are positively valued by all agents,
PROPX and PO allocations exist when (1) there are two agents with any
additive valuations and symmetric weights, or (2) any number of agents with
lexicographic or bi-valued valuations, even if agents may have asymmetric
weights.

5This is actually the general setting if we consider a weaker definition of PROPX where
the removed item must have a non-zero cost to the agent. A similar weaker definition of
EFX is discussed in [55, 31]. Under the weaker definition, if there is an item for which
an agent has zero cost, we can allocate this item to that agent, which will not violate the
requirement anyway. Therefore, without loss of generality, we can assume all the items
are positively valued by all agents.

5

1.2. Other Related Works

EF1 and EFX Allocations. Two widely studied relaxations of envy-freeness
are envy-freeness up to one item (EF1) [53] and envy-freeness up to any item
(EFX) [31], which were first proposed for goods. Informally, EF1 allocations
require that the envy is eliminated after removing one item from a bundle.
On the positive side, Lipton et al. [53] and Bhaskar et al. [26] proved that
EF1 allocations are guaranteed to exist and can be found efficiently even
when the agents have monotone combinatorial valuations. On the negative
side, some EF1 allocations can be unfair even when the instance admits a
fairer allocation. For example, consider allocating one large good and two
identical small goods among two agents; if one agent gets a small good and
the other agent gets the remaining goods, the allocation is EF1. EFX is
proposed to improve the fairness guarantee, where envy is eliminated after
removing any item from the bundle. Thus in the previous example, an EFX
allocation will allocate both small goods to the agent who does not obtain the
large one. Though EFX is fairer, it is still unknown whether such allocations
are guaranteed to exist or not, except for some special cases [55, 33, 24, 6].
Particularly, Plaut and Roughgarden [55] proved that EFX allocations exist
for IDO instances with goods. Our work complements this result by showing
EFX allocations also exist for IDO instances with chores. Recently, Baklanov
et al. [16] proved the existence of PROPm allocations, which is a criterion
sitting somewhere between PROP1 and PROPX.

MMS and PROPm Allocations. Besides PROP1 and PROPX, MaxMinShare
(MMS) guarantee [28] is a well-studied relaxation of proportionality. On one
hand, it has been shown that for both goods [51] and chores [12], MMS
allocations are not guaranteed to exist. Stronger inapproximability results
are proved in [38]. On the other hand, a series of constant approximation
algorithms are designed in the last decade, e.g., see [51, 36, 42, 48], with the
best-known approximation ratio being 3/4 + 3/3836 for goods [1] and 13/11
for chores [49]. For goods, while PROPX allocations may not exist, Bak-
lanov et al. [15] proposed proportionality up to the maximin item (PROPm),
which is a criterion sitting somewhere between PROP1 and PROPX. In a
subsequent work [16], the existence of PROPm allocations is proved.

Weighted Fairness. While most literature studies the special yet important
case where agents have equal entitlement or obligation share to the items,
there is also fast-growing recent literature on the more general model in

6

which agents may have arbitrary and possibly unequal shares. For example,
Farhadi et al. [36] and Aziz et al. [9] adapted MMS to this setting for goods
and chores, respectively and designed approximation algorithms accordingly.
Babaioff et al. [13, 14] provided different generalizations of MMS to this
case. Weighted EF1 allocations are known to exist and can be computed
efficiently for goods [32] and for chores [58]. Recently, AnyPrice Share (APS)
fairness was introduced by Babaioff et al. [13], where a 3/5-approximation
algorithm is designed for goods and a 2-approximation algorithm is designed
for chores. Recently, the approximation for chores is improved to 1.733 by
Feige and Huang [37].

Partial Information. All the aforementioned fairness notions related to EF
and PROP are defined using agents’ cardinal preferences. However, in prac-
tical applications, the numbers of agents and items can be very large, and
thus it may be impractical and even impossible for the algorithm to collect
the complete information on all these cardinal values. Accordingly, one line
of research in the literature studies how to use partial information on the
preferences to compute approximately fair allocations. Ordinal information
setting is a typical case where the algorithm only knows each agent’s ranking
over the items without cardinal values. For goods, using ordinal preferences
to compute approximately MMS allocations has been studied in [5, 43] and
the optimal approximation is logarithmic. For chores, Aziz et al. [10] showed
that the tight approximation ratio is between 1.405 and 5/3, and recently,
the upper bound is improved to 8/5 by Feige and Huang [37]. In our work,
we aim to explore the limit of ordinal preferences to approximate PROPX
fairness.

Fairness vs. Efficiency. Besides fairness, efficiency, which is a competing
criterion to fairness, is another important criterion to evaluate allocations.
One of the most intriguing problems is to understand if these fairness notions
can be satisfied together with PO and fPO. While the compatibility between
fairness and efficiency for goods is well understood [21, 39, 20], the problem
for chores is not. For indivisible chores, it is shown in [35] and [40] that when
agents have bi-valued valuations, or when there are at most two agents, EF1
and PO allocations exist and can be found in polynomial time. Recently,
Garg et al. [41] extended these results to the cases when there are three
agents and when there are at most two cost functions. Another efficiency-
fairness tradeoff question is to understand the loss in social welfare when

7

fairness is enforced, which is quantitatively measured by price of fairness.
Bounding the price of fairness for goods and chores is widely studied in the
literature [25, 30, 44, 23, 17, 45]. In the appendix of this paper, we study the
price of fairness for indivisible chores under (weighted) PROPX requirement
and show that our algorithm achieves the optimal ratio.

1.3. Road Map

The following sections are organized as follows. In Section 2, we intro-
duce the formal definitions of our problem. In Sections 3 and 4, we design
algorithms to compute PROPX allocations for the symmetric and asymmet-
ric settings. In Section 5, we consider the ordinal setting when we only know
the rankings of the agents and design algorithms to compute approximately
PROPX allocations. Finally, we consider the compatibility between PROPX
and PO in Section 6. Some missing proofs and the discussion of the price of
fairness regarding PROPX can be found in the appendix.

2. Model and Solution Concepts

We consider the problem of fairly allocating a set of m indivisible chores
M to a group of n agents N . Each agent i ∈ N has a cost function ci : 2M →
R+ ∪ {0}. The cost functions are assumed to be additive in the current
work; that is, for any item set S ⊆ M , ci(S) =

∑
e∈S ci({e}). When there is

no confusion, we use ci(e) to denote ci({e}). Since we consider proportional
fairness in this work, we sometimes assume without loss of generality that the
cost functions are normalized, i.e., ci(M) = 1. An allocation is represented
by a partition of the items X = (X1, . . . , Xn), where each agent i obtains
Xi, Xi ∩ Xj = ∅ for all i 6= j and ∪i∈NXi = M . An allocation is called
partial if ∪i∈NXi 6= M . Let the social cost of the allocation X be sc(X) =∑

i∈N ci(Xi). If some item is fractionally allocated to more than one agent,
the allocation is called fractional and is denoted by x = (x1, . . . , xn) where
xi = (xi,1, · · · , xi,m) is the allocation of agent i and 0 ≤ xi,e ≤ 1 is the fraction
of item e given to agent i. Note that it is required that

∑
i∈N xi,e = 1 for

each item e ∈ M . A fractional allocation y Pareto improves a fractional
allocation x if ci(yi) ≤ ci(xi) for all i ∈ N and for some i the inequality is
strict. We will call an allocation Pareto optimal (PO), if no integral allocation
Pareto improves it. An allocation that cannot be Pareto improved by any
fractional allocation is called fractional Pareto optimal (fPO). Clearly, an fPO
allocation is PO as well. We are sometimes interested in a special setting,

8

identical ordering (IDO), in which all agents agree on the same ranking of
the items, i.e., ci(e1) ≥ · · · ≥ ci(em) for all i ∈ N . Note that in an IDO
instance, the agents’ cardinal cost functions can still be different.

We next define envy-freeness, proportionality and their relaxations. For
ease of discussion, in this section, we focus on the case of symmetric agents,
also called unweighted case, and defer the definitions for asymmetric-agent
case to Section 4.

Definition 2.1 (EF and PROP). An allocation X is envy-free (EF) if ci(Xi) ≤
ci(Xj) for any i, j ∈ N . The allocation is proportional (PROP) if ci(Xi) ≤
PROPi for any i ∈ N , where PROPi = (1/n) · ci(M) is agent i’s proportional
share for all items.

For normalized cost functions PROPi = 1/n, ∀i ∈ N .

Definition 2.2 (EF1 and EFX). An allocation X is envy-free up to one item
(EF1) if for any i, j ∈ N , there exists e ∈ Xi such that ci(Xi \{e}) ≤ ci(Xj).
The allocation is envy-free up to any item (EFX) if for any i, j ∈ N and any
e ∈ Xi, ci(Xi \ {e}) ≤ ci(Xj).

It is easy to see that any EFX allocation is EF1, but not vice versa. We
adopt similar ideas to relax the definition of proportionality.

Definition 2.3 (PROP1 and PROPX). For any α ≥ 1, an allocation X is
α-approximate proportional up to one item (α-PROP1) if for any i ∈ N ,
there exists e ∈ Xi such that ci(Xi \ {e}) ≤ α · PROPi. The allocation is
α-approximate proportional up to any item (α-PROPX) if for any i ∈ N and
any e ∈ Xi, ci(Xi \ {e}) ≤ α · PROPi. When α = 1, allocation X is PROP1
or PROPX, respectively.

Similarly, any PROPX allocation is PROP1, but not vice versa. As we
will see for any additive cost functions, PROPX allocations exist and can be
found in polynomial time. Thus we always focus on PROPX allocations in
this work. Next, we show that PROPX is weaker than EFX.

Lemma 2.1. Any EFX allocation is PROPX.

Proof. For any EFX allocation X and any agent i, ci(Xi \ {e}) ≤ ci(Xj)
for all e ∈ Xi and j ∈ N . Summing up the inequalities for all j, we have
n · ci(Xi \ {e}) ≤ ci(M). Thus X is PROPX.

9

Finally, we recall the definition of maximin share fairness.

Definition 2.4 (MMS). Let Π(M) be the set of all n-partitions of M . For
any agent i ∈ N , her maximin share (MMS) is defined as

MMSi = min
X∈Π(M)

max
j∈N
{ci(Xj)}.

For any α ≥ 1, an allocation X is α-approximate maximin share fair (α-
MMS) if ci(Xi) ≤ α ·MMSi for all i ∈ N . When α = 1, allocation X is MMS
fair.

Given the definition of MMS fairness, it is not hard to observe the fol-
lowing inequality.

MMSi ≥ max

{
max
e∈M
{ci(e)},PROPi

}
,∀i ∈ N. (1)

Lemma 2.2. Any PROPX allocation is 2-MMS.

Proof. We will prove a stronger argument here: for any PROPX allocation X
and for any agent i, either |Xi| ≤ 1 or ci(Xi) ≤ 2 ·PROPi. Then by Equation
(1), Lemma 2.2 holds. For any agent i, if |Xi| ≤ 1, the claim holds trivially.
If |Xi| ≥ 2, letting ei = arg mine∈Xi

{ci(e)}, we have

ci(Xi \ {ei}) ≤ PROPi,

and
ci(ei) ≤ ci(Xi \ {ei}) ≤ PROPi.

Thus ci(Xi) = ci(Xi \ {ei}) + ci(ei) ≤ 2 · PROPi.

The approximation ratio in the lemma is tight. Consider an instance with
two identical agents and two identical items. Allocating both items to one
of them is PROPX but only 2-MMS.

Lemma 2.3. There exists an MMS allocation that is Θ(n)-PROPX.

Proof. Consider an instance with n agents and m = n items where n is
sufficiently large. In this instance, all agents have identical cost functions
for the items. For each agent i, let ci(e1) = n − 1 and ci(ej) = 1 for all
j = 2, . . . , n. Thus

MMSi = n− 1 and PROPi =
2(n− 1)

n
.

10

Consider an allocation where Xi = {e2, . . . , en} is allocated to some agent
i. Note that ci(Xi) = n − 1 = MMSi. However, this allocation is not fair
regarding PROPX because ci(Xi \ {e}) = n − 2 = Θ(n) · PROPi for any
e ∈ Xi.

Actually, no allocation can be worse than n-PROPX, as for any chore
allocation instance, the most unfair allocation is to allocate all items to a
single agent, which is n-PROPX.

3. Warm-up: Unweighted Agents

The existence of PROPX allocations for chores was first proved by Moulin
[54] via a novel algorithm with running time O(nm2). In this section, we show
that PROPX allocations can also be obtained by the commonly used tech-
niques, namely, envy-cycle elimination and IDO reduction. We use envy-cycle
elimination algorithm to compute PROPX allocations for IDO instances in
this section, and defer the IDO reduction to handle the general cost functions
to Section 4.

The Algorithm. The envy cycle elimination algorithm was first proposed in
[53] for goods and was adapted to chores in [26] recently. Given any (partial)
allocation X = (X1, . . . , Xn), we say that agent i envies j if ci(Xi) > ci(Xj)
and most-envies j if ci(Xi) > ci(Xj) and j ∈ arg mink∈N ci(Xk). Note that
an agent may have multiple most-envied agents. For any allocation X, we
can construct a directed graph GX , called the top-trading envy graph, where
the agents are nodes and there is a directed edge from i to j if and only if
i most-envies j. A directed cycle C = (i1, . . . , id) is referred as a top-envy
cycle. For any top-envy cycle C, the cycle-swapped allocation XC is obtained
by reallocating bundles backwards along the cycle. That is, XC

i = Xi if i is
not in C, and

XC
ij

=

{
Xij+1

for all 1 ≤ j ≤ d− 1

Xi1 for j = d.
(2)

The algorithm works by assigning, at each step, the unassigned item with
the highest cost to an agent who does not envy anyone else (i.e., a non-
envious agent who is a “sink” node in the top-trading envy graph). If the
top-trading envy graph GX does not have a sink, then it must have a cycle

11

[26]. Then resolving the top-trading envy cycles, by executing the corre-
sponding cycle-swapped allocation, guarantees the existence of a sink agent
in the top-trading envy graph. The full description of the algorithm is intro-
duced in Algorithm 1. The following example demonstrates the execution of
Algorithm 1, which also shows that the returned allocation may not be PO.

Example 3.1. Consider an instance with two agents and three items. Note
that the costs are shown in the following table.

ci(e1) ci(e2) ci(e3)

Agent 1 0.4 0.3 0.3

Agent 2 0.4 0.4 0.2

Algorithm 1 returns an allocation X as shown in squares. Note that X is
not PO since it is Pareto dominated by allocation X′ with X ′1 = {e2} and
X ′2 = {e1, e3}.

Algorithm 1: Top-trading Envy Cycle Elimination

1 Input: IDO instance with ci(e1) ≥ · · · ≥ ci(em) for all i ∈ N .
2 Initialize: X = (X1, . . . , Xn) where Xi ← ∅ for all i ∈ N .
3 for j = 1, 2, . . . ,m do
4 if there is no sink in GX then
5 Let C be any cycle in GX .
6 Reallocate the items according to XC (i.e., the cycle-swapped

allocation) and update the allocation X.

7 Choose a sink k in the graph GX and update Xk ← Xk ∪ {ej}
according to Equation (2).

8 Output: Allocation X = (X1, . . . , Xn).

Algorithm 1 is the same as the one designed in [18, 26] except that we
allocate the item with the highest cost to the sink agent at each step. It is
proved in [26] that no matter which item is allocated, the returned allocation
is EF1. In the following, we show a stronger argument: if we select the item
with the highest cost at each step, we can guarantee that the allocation is
EFX for IDO instances.

Lemma 3.1. For any IDO instance, Algorithm 1 returns an EFX allocation
in O(n3m) time.

12

We prove Lemma 3.1 in Appendix. We remark that a parallel work [29]
also proved that the envy-cycle elimination algorithm achieves EFX for IDO
instances in the case of goods as well. Combining Lemmas 3.1 and 2.1,
we have that for IDO instances, PROPX allocations can be computed in
polynomial time by Algorithm 1.

The running time of Algorithm 1 is O(n3m), which is not comparable
with that by Moulin [54] in terms of time complexity. The advantage of
Algorithm 1 is that the envy-cycle elimination algorithm is widely used in fair
division which satisfies some good properties such as approximately MMS. It
is proved in [19] that the envy-cycle elimination algorithm, where the cycles
are resolved arbitrarily, guarantees 4/3-MMS for chores. Since Algorithm 1
only uses one particular way to resolve the cycles, it continues to ensure
4/3-MMS.

Lemma 3.2 ([19]). Algorithm 1 outputs a 4/3-MMS allocation.

We complement this result with an example implying that the analysis
of Lemma 3.2 is tight. Consider the following instance with n agents and
2n+ 1 items where all agents have the same cost function shown in Table 1
and ε = 1/6(n− 1). It can be verified that MMSi = 1 + 2ε for every agent i,
and the corresponding allocation X∗ has X∗j = {ej, e2n−j−1} for all j ≤ n−1,
and X∗n = {e2n−1, e2n, e2n+1}. Note that

ci(X
∗
j) = 1 + 2ε and ci(X

∗
n) = 1 + ε.

However, the allocation returned by Algorithm 1 in the first 2n steps is
Xi = {ei, e2n−i+1} for all i ∈ N and accordingly ci(Xi) = 1. In the last step,
no matter which agent obtains item e2n+1, her cost will be 4/3. Thus the
allocation is 4/(3(1 + 2ε))-MMS.

Item e1 · · · ej · · · en en+1 · · · en+j · · · e2n e2n+1

Cost 2
3 · · · 2

3 − (j − 1)ε · · · 1
2

1
2 · · · 1

2 − (j − 1)ε · · · 1
3

1
3

Table 1: A Tight Example for Lemma 3.2

We conclude the above discussion by the following theorem, where the
reduction to general instances will be proved in Lemma 4.1.

Theorem 3.1. There is an algorithm that given any unweighted instance
returns an allocation that is simultaneously PROPX and 4/3-MMS. In addi-
tion, if the instance is IDO, the allocation is EFX.

13

4. Weighted PROPX Allocations

In this section, we focus on the general case where the agents may have
different shares for the items. Specifically, each agent i ∈ N has share si > 0,
and

∑
i∈N si = 1. Intuitively, si represents how large a fraction of the chores

should be completed by agent i.

4.1. Weighted PROPX Allocations

We first adapt our solution concepts to the weighted setting. The weighted
proportionality of each agent is WPROPi = si · ci(M). When the cost func-
tions are normalized, WPROPi = si.

Definition 4.1 (WPROP and WPROPX). For any α ≥ 1, an allocation X
is α-approximate weighted proportional (α-WPROP) if ci(Xi) ≤ α ·WPROPi

for all i ∈ N . An allocation X is α-approximate weighted proportional up to
any item (α-WPROPX) if ci(Xi \ {e}) ≤ α ·WPROPi for any agent i ∈ N
and any item e ∈ Xi. When α = 1, allocation X is WPROP or WPROPX,
respectively.

As we have mentioned in Section 3, to design algorithms to compute
PROPX and WPROPX allocations, it is without loss of generality to focus
on the IDO instances. We present the lemma as follows and leave the formal
proof in Appendix.

Lemma 4.1. If there exists a polynomial time algorithm A that given any
IDO instance computes an α-WPROPX allocation, then there exists a poly-
nomial time algorithm A′, whose running time is that of A plus O(mn logm),
that given any instance computes an α-WPROPX allocation.

Lemma 4.1 is the same as the counterpart reductions in [27, 19, 48] which
are designed for (unweighted) MMS. It deserves to note that the reduction
does not need to access the cardinal costs and thus holds for the ordinal
setting as well.

Next, we show that any WPROPX allocation achieves a 2-approximation
of AnyPrice share (APS) fairness [13]. We first adapt the APS fairness de-
fined in [13] for goods to chores. The high-level idea is as follows. Each
agent’s weight is regarded as her loan from the system and she can obtain a
reward by completing a chore to repay the loan. The agent’s AnyPrice Share
is then defined as the smallest cost she can guarantee by completing a set of

14

chores that suffices to repay the loan when the items’ rewards are adversari-
ally set with a total reward of 1. Let R = {(r1, . . . , rm) | rj ≥ 0 for all ej ∈
M and

∑
ej∈M rj = 1} be the set of item-reward vectors.

Definition 4.2 (AnyPrice Share). The AnyPrice Share (APS) of agent i
with weight si is defined as

APSi = max
(r1,...,rm)∈R

min
S⊆M

ci(S) |
∑
ej∈S

rj ≥ si

 .

For any α ≥ 1, an allocation X is α-approximate AnyPrice Share fair (α-
APS) if ci(Xi) ≤ α ·APSi for any agent i ∈ N . When α = 1, allocation X is
APS fair.

Similar to Lemma 2.2, we have the following property regarding WPROPX
and APS, which immediately implies that any algorithm that computes
WPROPX allocations is 2-APS fair.

Lemma 4.2. Any WPROPX allocation is 2-APS.

Proof. Before proving the lemma, we first claim the following inequality for
APS.

APSi ≥ max{si,maxe∈M{ci(e)}}. (3)

To show APSi ≥ si, it suffices to find a reward vector (r1, . . . , rm) such that
every set S of items with reward no less than si is at least of cost si. Thus,
we can simply set rj = ci(ej). Similarly, to show APSi ≥ ci(ej∗), where
ej∗ = arg maxej∈M{ci(ej)}, we set rj∗ = 1 and rj = 0 for j 6= j∗. Then
the unique way to repay the loan is to complete chore ej∗ , which incurs
cost ci(ej∗). For any WPROPX allocation X and any agent i, we have
ci(Xi\{e}) ≤ si for any e ∈ Xi. Thus ci(Xi) ≤ si+maxe∈M{ci(e)} ≤ 2·APSi,
where the last inequality follows from Inequality (3).

However, an APS allocation can be Θ(n)-WPROPX. Recall the example
in Lemma 2.3. In that example, there are n agents and m = n items, and for
all agent i ∈ N we have ci(e1) = n− 1 and ci(ej) = 1 for j = 2, . . . , n. Thus

APSi ≥ max
e∈M
{ci(e)} = n− 1 and PROPi =

2(n− 1)

n
.

Thus allocating {e2, . . . , en} to some agent i is APS to her but has Θ(n)
approximation regarding PROPX.

15

4.2. Bid-and-Take Algorithm

Note that the top-trading envy cycle elimination algorithm is not able to
compute a WPROPX allocation for the weighted setting. Instead, in this
section, we present the bid-and-take algorithm. In our algorithm, the items
are allocated from the highest to the lowest cost. Moreover, each item is
allocated to an active agent that minimizes the current social cost, i.e., who
has minimum cost on the item among all active agents. Initially, all agents
are active. When the cumulative cost of an agent exceeds her proportional
share, we inactivate her.

Algorithm 2: Bid-and-Take

1 Input: IDO instance with ci(e1) ≥ · · · ≥ ci(em) and ci(M) = 1,
∀i ∈ N , and shares of agents 0 < s1 ≤ · · · ≤ sn and

∑
i∈N si = 1.

2 Let Xi ← ∅, ∀i ∈ N and A← N be the set of active agents.
3 for j = 1, 2, . . . ,m do
4 Let i ∈ arg mini′∈A{ci′(ej)}, and set Xi ← Xi ∪ {ej}.
5 if ci(Xi) > si then
6 A← A \ {i}.

7 Output: Allocation X = (X1, . . . , Xn).

The following example demonstrates the execution of Algorithm 2, and
we can also observe that the returned allocation may not be PO either.

Example 4.1. Consider an instance with two agents and six items, where
the two agents have the same weight. The costs are shown in the following
table.

ci(e1) ci(e2) ci(e3) ci(e4) ci(e5) ci(e6)

1 0.26 0.26 0.12 0.12 0.12 0.12

2 0.27 0.27 0.22 0.22 0.01 0.01

The allocation X returned by Algorithm 2 is shown in the squares. However,
the two agents can exchange item e2 and items {e3, e4} to get an allocation
X′, where c1(X ′1) = c1({e1, e3, e4}) = 0.5 < 0.52 = c1(X1) and c2(X ′2) =
c2({e2, e5, e6}) = 0.29 < 0.44 = c2(X2). Hence X′ Pareto improves X.

Next, we prove the following property for Algorithm 2.

16

Claim 4.1. At any point of Algorithm 2, for any active agents i, i′ ∈ A,

ci(Xi′) ≥ ci′(Xi′).

Proof. Since we allocate each item to the active agent that has the smallest
cost on the item, we have ci(e) ≥ ci′(e) for each item e ∈ Xi′ (because
both agents i and i′ are active when the item is allocated). Hence we have
ci(Xi′) ≥ ci′(Xi′), and Claim 4.1 holds.

Lemma 4.3. Algorithm 2 returns a WPROPX allocation in O(mn) time for
IDO instances.

Proof. Note that in Algorithm 2, an agent becomes inactive as soon as
ci(Xi) > si, and no additional item will be allocated to this agent. Hence to
show that the final allocation X = (X1, . . . , Xn) is WPROPX, it suffices to
show that the algorithm allocates all items, i.e., the set of active agents A is
non-empty when each item j ∈ M is considered. Note that if all items are
allocated, for any agent i ∈ N , we have ci(Xi \ {e}) ≤ si for any item e ∈ Xi

by the fact that items are allocated in decreasing order of the cost.
Next, we show that A 6= ∅ when considering each item ej ∈ M . Suppose

when we consider some item ej, all agents are inactive, i.e., A = ∅. Let i
be the last agent that becomes inactive. At the moment when i becomes
inactive, we have

ci(M) ≥
∑
i′∈N

ci(Xi′) ≥
∑
i′∈N

ci′(Xi′) >
∑
i′∈N

si′ = 1,

where the second inequality follows by Claim 4.1 and the last inequality by
the design of the algorithm, which is a contradiction with ci(M) = 1.

The algorithm runs in O(mn) time as there are m rounds and in each
round, we only need to find an agent who has the smallest cost on this
item.

Combining Lemmas 4.3 and 4.1, we have the following theorem.

Theorem 4.1. There is an algorithm that computes a WPROPX allocation
for any weighted instance in polynomial time.

17

5. Ordinal Setting

In this section, we investigate the extent to which we can compute ap-
proximately (weighted) PROPX allocations with ordinal preferences. Note
that the problem becomes trivial if m ≤ n, because as long as every agent
gets at most one item, the allocation is PROPX. Thus in the following, we
assume m > n. By Lemma 4.1, it suffices to consider the IDO instances, and
thus we omit the additional running time of O(mn logm) for the reduction
for simplicity when we analyze the running time of our algorithms.

5.1. Unweighted Setting

To highlight the intuition, we first consider the unweighted case, and
present Algorithm 3 which always computes a 2-PROPX allocation in poly-
nomial time. In the algorithm, we partition the agents into two groups:
N1 = {1, 2, . . . , bn/2c} and N2 = N \N1. We first allocate each agent in N1

a large item and then run the round-robin algorithm where agents in N2 take
turns to select an item with the largest cost from the remaining items.

Algorithm 3: Ordinal Approximate PROPX Allocation

1 Input: IDO instance with ci(e1) ≥ · · · ≥ ci(em) for all i ∈ N .
2 Initialize: X = (X1, . . . , Xn) where Xi ← ∅ for all i ∈ N .
3 for j = 1, 2, . . . , bn

2
c do

4 Xj ← {ej}.
5 Let i← 1.
6 for j = bn

2
c+ 1, bn

2
c+ 2, . . . ,m do

7 Xi+bn
2
c ← Xi+bn

2
c ∪ {ej}.

8 i← (i mod (bn
2
c+ 1) + 1).

9 Output: Allocation X = (X1, . . . , Xn).

Theorem 5.1. Algorithm 3 returns a 2-PROPX allocation in O(m) time.

Proof. It is straightforward that the algorithm runs in O(m) time as the
owner of each item is prefixed. Recall that N1 = {1, 2, . . . , bn/2c} and N2 =
N \ N1. Thus |N1| = |N2| if n is even and |N1| + 1 = |N2| otherwise. Let
(X1, . . . , Xn) be the returned allocation. It is obvious that the allocation is

18

PROPX for all i ∈ N1 as |Xi| = 1. Consider any agent i ∈ N2. Denote by
Xi = {e1, . . . , ek} the items allocated to i, where

ci(e1) ≥ ci(e2) ≥ · · · ≥ ci(ek).

Since the items allocated to agents in N1 are those with largest costs, we
have

ci(e1) ≤ ci(Xl) for all l ∈ N1. (4)

Moreover, as the items {ebn/2c+1, . . . , em} are allocated from the most
costly to the least costly in a round-robin manner, we have

ci(Xi \ {e1}) ≤ ci(Xj) for all j ∈ N2 \ {i}.
Thus we have

|N2| · ci(Xi \ {e1}) ≤ ci(Xi \ {e1}) +
∑

j∈N2\{i}

ci(Xj)

=
∑
j∈N2

ci(Xj)− ci(e1) = 1−
∑
l∈N1

ci(Xl)− ci(e1) ≤ 1− (|N1|+ 1) · ci(e1),

where the last inequality follows from Inequality (4). Thus

ci(Xi) = ci(e1) + ci(Xi \ {e1}) ≤ ci(e1) +
1

|N2|
(
1− (|N1|+ 1) · ci(e1)

)
=

1

|N2|
+

(
1− |N1|+ 1

|N2|

)
· ci(e1) ≤ 1

|N2|
≤ 2

n
= 2 · PROPi,

where the second inequality follows from |N1| + 1 ≥ |N2|, and the last in-
equality holds because |N2| ≥ n/2.

Actually, regarding PROPX, the approximation ratio 2 our algorithm
achieves is the best possible for ordinal algorithms, proved in the following
lemma.

Lemma 5.1. With only ordinal preferences, no algorithm can guarantee a
better-than-2 approximation for PROPX.

Proof. Consider an IDO instance with 2 agents and m items, where m is
sufficiently large and ci(e1) ≥ · · · ≥ ci(em) for both i ∈ {1, 2}. Without loss
of generality, suppose item e1 is allocated to agent 1. If |X1| > 1, consider
the cardinal costs for agent 1, c1(e1) = 1 and c1(ej) = 0 for all j > 1,
and thus c1(X1 \ {e}) = 2 · PROP1 for any e ∈ X1 \ {e1}. If |X1| = 1,
consider the cardinal costs for agent 2, c2(e) = 1/m for all e ∈ M , and thus
c2(X2 \ {e}) = 1− 2/m ≈ 2 · PROP2 for any e ∈ X2.

19

5.2. Weighted Setting

We next extend Algorithm 3 to the weighted setting. Given an arbitrary
weighted instance with s1 ≤ · · · ≤ sn, let

i∗ = max{i |
∑i

j=1 sj ≤
1
2
}.

We partition the agents into two groups: N1 = [i∗] and N2 = N \ N1. Let
w1 =

∑
i∈N1

si. It is not hard to see the following properties.

• By definition we have w1 ≤ 1/2.

• We have i∗ ≥ n/2 because
∑n/2

i=1 si ≤ 1/2.

• We have si > 1/(2i∗ + 2) for all i ∈ N2 because otherwise si∗+1 ≤
1/(2i∗ + 2), which implies

∑i∗+1
j=1 sj ≤ 1/2. In other words, i∗ + 1

should be included in N1 as well, which is a contradiction.

As before, we assign each agent j ∈ N1 a single item ej ∈M . Recall that
these are the i∗ items with the maximum costs. Let ML = {e1, e2, . . . , ei∗}
be these items, and MS = M \ ML be the remaining items. We call ML

the large items and MS the small items. Then we run a weighted version of
round robin algorithm by repeatedly allocating an item to the agent i ∈ N2

with the minimum |Xi|/si until all items are allocated (see Algorithm 4).
The weighted round robin algorithm is proved to ensure weighted EF1 for
indivisible goods in [32]. In Lemma 5.2, we prove that the weighted round
robin algorithm also ensures weighted EF1 for IDO instances with chores.
Recently, our approach was used in [58] to show the existence of weighted
EF1 allocations for non-IDO instances.

Our main result relies on the following technical lemma.

Lemma 5.2. For every agent j 6= i, we have

ci(Xi \ {ei})
si

≤ ci(Xj)

sj
.

Proof. Suppose Xi = {o1, o2, . . . , ok}, where ci(o1) ≥ · · · ≥ ci(ok). Recall
that o1 = ei. As we need to compared the costs of bundle Xi \ {ei} and Xj

that are scaled by different weights, for convenience we translate the scaled
cost into an integration as follows.

20

Algorithm 4: Ordinal Approximate WPROPX Allocation

1 Input: IDO instance, and the shares of agents s1 ≤ · · · ≤ sn.
2 Initialize: X = (X1, . . . , Xn) where Xi ← ∅ for all i ∈ N .

3 Let i∗ = max{i |
∑i

j=1 sj ≤ 1/2}, N1 = {1, . . . , i∗} and N2 = N \N1.

4 for j = 1, 2, . . . , i∗ do
5 Xj ← {ej}.
6 for j = i∗ + 1, . . . ,m do
7 Let l ∈ arg minl{|Xl|/sl} where tie is broken by agent ID.
8 Xl ← Xl ∪ {ej}.
9 Output: Allocation X = (X1, . . . , Xn).

We define a real-valued function ρ : (0, k/si]→ R+ such that:

ρ(α) = ci(ot), for
t− 1

si
< α ≤ t

si
and t ∈ [k].

Thus, for all t ∈ [k], we have

ci(ot)

si
=

∫ t
si

t−1
si

ρ(α) dα and
ci(Xi \ {ei})

si
=

∫ k
si

1
si

ρ(α) dα.

On a high level, we can interpret the inclusion of item ot to Xi as agent
i continuously eats item ot. Such process increases the scaled cost of agent i
by ci(ot)

si
and increases |Xi|

si
from t−1

si
to t

si
.

Similarly, we assume Xj = {o′1, . . . , o′k′}, where ci(o
′
1) ≥ · · · ≥ ci(o

′
k′), and

define

ρ′(α) = ci(o
′
t), for

t− 1

sj
< α ≤ t

sj
.

By definition we have

ci(Xj)

sj
=

∫ k′
sj

0

ρ′(α) dα.

Recall that in Algorithm 4, each item is allocated to the agent i ∈ N2

with the minimum |Xi|/si. Thus we have

k − 1

si
=
|Xi| − 1

si
≤ |Xj|

sj
=
k′

sj
,

21

where the inequality holds because otherwise item ok will not be allocated to
agent i in Algorithm 4.

Next, we show that ρ(α) ≤ ρ′(α − 1
si

). Consider the round when |Xi|/si
reaches α. Suppose item ot is allocated to agent i in this round, i.e., ρ(α) =
ci(ot). Note that in this round, we must have |Xj|/sj ≥ α − 1/si. Because
otherwise when item ot is considered we have |Xj|/sj < α − 1/si ≤ |Xi|/si,
which means that item ot should not be allocated to agent i. In other words,
the event “|Xj|/sj reaches α−1/si” happens before the event “|Xi|/si reaches
α”. Since items are allocated from the most costly to the least costly, we
have ρ(α) = ci(ot) ≤ ρ′(α− 1/si).

Combining the above discussion, we have

ci(Xi \ {ei})
si

=

∫ k
si

1
si

ρ(α) dα ≤
∫ k

si

1
si

ρ′(α− 1

si
) dα

=

∫ k−1
si

0

ρ′(α) dα ≤
∫ k′

sj

0

ρ′(α) dα =
ci(Xj)

sj
,

which proves the lemma.

Given the above lemma, we can obtain the following main result.

Theorem 5.2. Algorithm 4 computes a 2-WPROPX allocation in O(mn)
time for any given weighted instance.

Proof. It is straightforward that the algorithm runs in O(mn) time as there
are O(m) rounds for the second for-loop and each round requires O(n) time.

As before, it suffices to show that the allocation is 2-WPROP for N2, i.e.,
ci(Xi) ≤ 2 · si for all i ∈ N2. In Algorithm 4, each agent i ∈ N2 receives item
i ∈MS as her first item. Next we upper bound the total cost agent i receives
excluding item i. By Lemma 5.2, we have∑

j∈N2

sj
si
· ci(Xi\{ei}) ≤ ci(Xi\{ei}) +

∑
j∈N2\{ei}

ci(Xj) = ci(MS)− ci(ei).

Reordering the above inequality, we have

ci(Xi \ {ei}) ≤
si∑

j∈N2
sj
· (ci(MS)− ci(ei))

≤ 2 · si · (ci(MS)− ci(ei)),

22

where the second inequality holds because
∑

j∈N2
sj ≥ 1/2.

Since every item in ML has cost at least ci(ei) under the cost function of
agent i, we have ci(ML) ≥ i∗ · ci(ei). Therefore we have

ci(Xi) = ci(Xi \ {ei}) + ci(ei)

≤ 2 · si · (ci(MS)− ci(ei)) +
ci(ML) + ci(ei)

i∗ + 1

< 2 · si · (ci(MS)− ci(ei)) + 2 · si · (ci(ML) + ci(ei)) ≤ 2 · si,

where the second inequality holds because si > 1/2(i∗ + 1) and ci(ML) +
ci(ei) > 0.

6. Pareto Optimal and PROPX Allocations

We first prove that PROPX and PO are not compatible with any n ≥ 2
agents and additive valuations, even when the agents have symmetric weights.

Theorem 6.1. PROPX and PO are not compatible with any n ≥ 2 agents
and additive valuations, even when the agents have symmetric weights.

Proof. Consider the following instance with n ≥ 2 symmetric agents and
m = n+ 1 items. Let 0 < ε < 1

n2 be a small constant.

ci(e1) ci(e2) . . . ci(en) ci(en+1)
1 0 ε . . . ε 1− (n− 1)ε
2 ε 0 . . . ε 1− (n− 1)ε
...

...
...

. . .
...

...
n ε ε . . . 0 1− (n− 1)ε

Note that in this instance, any PO allocation must allocate item i to
agent i, for all i = 1, · · · , n. Otherwise reallocating item i from its owner
to agent i does not hurt anyone but strictly decreases the original owner’s
cost. However, in such allocations, the agent who receives item n + 1 does
not satisfy PROPX, since by removing the item with cost 0, the remaining
cost is 1− (n− 1)ε > 1

n
.

The hard example in the above proof is due to some items that are zero-
valued by some agents. Thus, in the following of this section, we focus on
the case when all items are positively valued by all agents:

23

Assumption (?) ci(e) 6= 0 for all i ∈ N and e ∈M .

We find that, even with Assumption (?), PROPX and fPO are still not
compatible, in contrast with [11] where an fPO and PROP1 allocation exists
for chores.

Proposition 6.1. There may not exist any PROPX and fPO allocation even
with Assumption (?) and for 2 agents with symmetric weights.

Proof. Consider an instance with 2 agents and 3 items. The costs are shown
as follows.

ci(e1) ci(e2) ci(e3)
1 0.1 0.7 0.2
2 0.2 0.7 0.1

In the above instance, it is straightforward that any PROPX allocation
cannot allocate all items to a single agent. By the characterization of fPO
allocations for 2 agents [8], there are two fPO integral allocations, both of
which allocate item e1 to agent 1 and item e3 to agent 2. However, neither
of the two allocations is PROPX because the agent who receives item e2 has
cost 0.7 after removing the item with minimum cost.

A similar result of Proposition 6.1 also appears in [41]. The proof of
Proposition 6.1 shows that no rounding of an fPO and PROPX fractional
allocation ensures PROPX. In the next two subsections, we identify several
cases in which PROPX and PO allocations exist under Assumption (?).

6.1. Two Agents

For the case of two agents, we show that PROPX and PO allocations
are guaranteed to exist if they have symmetric weights. Actually, we prove
a stronger statement that EFX and PO allocations exist for two symmetric
agents. Since PROPX is implied by EFX, the result follows.

Proposition 6.2. For two symmetric agents, EFX and PO allocations exist
under Assumption (?).

Proof. Recall that we normalize the cost functions of the two agents {1, 2} so
that c1(M) = c2(M) = 1. Let (X1, X2) be the leximax allocation. In other
words, among all allocations that minimizes max{c1(X1), c2(X2)}, (X1, X2)
has the minimum value of min{c1(X1), c2(X2)}. In the following, we show
that (X1, X2) is EFX and PO.

24

The Pareto optimality follows straightforwardly from the fact that the
allocation that Pareto improves (X1, X2) must have a higher lexicographical
order, which contradicts with (X1, X2) being Leximax. Next, we argue that
the allocation is EFX. If the allocation is PROP, e.g., both agents i ∈ {1, 2}
have ci(Xi) ≤ 0.5, then it is clearly EFX because ci(Xj) = 1 − ci(Xi) ≥ 0.5
for j 6= i. Now suppose that the allocation is not PROP. In other words,
there is an agent, say agent 1, that has c1(X1) > 0.5. It follows that c1(X2) =
1− c1(X1) < 0.5. We claim that c2(X2) < 0.5.

Assume otherwise, i.e., c2(X1) ≤ 0.5. Thus swapping bundles X1, X2

gives a PROP allocation, which has max{c1(X2), c2(X1)} ≤ 0.5 and contra-
dicts with (X1, X2) being Leximax. Therefore agent 2 does not envy agent
1, and the allocation is EFX to agent 2.

Next, we prove that the allocation is also EFX to agent 1. That is for
any e ∈ X1 (recall that c1(e) > 0), we have c1(X1 \ {e}) ≤ c1(X2). Suppose
otherwise, e.g., c1(X1 \ {e}) > c1(X2). Then we have c1(X1) > c1(X2 ∪ {e}).
In other words, both X1 \ {e} and X2 ∪ {e} offer a smaller cost to agent
1, compared to X1. Now suppose we let agent 2 pick her preferred bundle
between X1 \ {e} and X2 ∪ {e}, and assign the remaining one to agent 1.
Then the cost of agent 2 is at most 0.5 while the cost of agent 1 is strictly
smaller than c1(X1), which contradicts with (X1, X2) being the Leximax
allocation.

The above result immediately implies the following.

Corollary 6.1. For two symmetric agents, PROPX and PO allocations exist.

Proposition 6.2 complements that of [55], who showed that for positive
utilities and symmetric weights, the leximax is EFX and PO. Since the com-
putation of Leximax allocation is NP-hard, our result only shows the exis-
tence of PROPX and PO allocations for two symmetric agents. A natural
open question is whether there exist polynomial-time algorithms for the com-
putation of such allocations.

When agents have asymmetric weights, the definition of Leximax alloca-
tion in the above proof can be generalized to first minimize max{c1(X1) −
s1, c2(X2)− s2} and then minimize min{c1(X1)− s1, c2(X2)− s2}. Unfortu-
nately, such an allocation (which is PO) might not be WPROPX due to the
following instance.

Example 6.1. Consider the following instance with two agents having asym-
metric weights s1 = 0.7 and s2 = 0.3.

25

ci(e1) ci(e2) ci(e3) ci(e4)

1 0.79 0.18 0.01 0.02

2 0.58 0.39 0.02 0.01

It can be verified that the only Leximax allocation has X1 = {e1, e3} and
X2 = {e2, e4}. Unfortunately, this allocation is not WPROPX.

One may also wonder whether the Leximax allocation is PROPX and PO
for n ≥ 3 agents. Unfortunately, via the following example, we show that
even for three symmetric agents, no Leximax allocation is PROPX and PO.

Example 6.2. Consider the following instance with three symmetric agents
and four items.

ci(e1) ci(e2) ci(e3) ci(e4)

1 0.34 0.05 0.31 0.3

2 0.4 0.4 0.09 0.11

3 0.4 0.4 0.11 0.09

To minimize the maximum cost, the Leximax allocation has to assign
items e1, e2 to agent 1. Thus the unique Leximax allocation assigns the items
as we indicated using the rectangles. However, this allocation is not PROPX
since

c1(X1\ {e2}) = c1(e1) = 0.34 > 1/3.

6.2. Restricted Cost Functions

In this section, we show that for the cases when agents have lexicographic
or bi-valued cost functions, PROPX and PO allocations always exist and can
be computed efficiently.

Definition 6.1 (Lexicographic Cost). We say that cost function c is lexico-
graphic if there is a partition (L1, . . . , Lk) of the items M such that

1. ∀i ∈ [k] and e, e′ ∈ Li, we have c(e) = c(e′), and

2. ∀i ∈ [k − 1] and e ∈ Li, we have c(e) > c(∪kj=i+1Lj).

Under lexicographic cost functions, we say that an agent prefers item e′

to item e if there exist i < j such that e ∈ Li and e′ ∈ Lj. An agent with
lexicographic cost function has a cost for each item that is higher than all
more preferred items combined.

26

Definition 6.2 (Bi-valued Cost). We say that cost function c is bi-valued if
there exist constants β > α > 0 such that c(e) ∈ {α, β} for all items e ∈M .

Given an allocation X, we can build a trading graph G(X) = (V (X), E(X)).
In G(X), the set of vertices V (X) contains one vertex per item in M . Fur-
thermore, for any two vertices e and e′, there is a directed edge from e to e′ if
ci(e

′) ≤ ci(e), where i is the agent who receives item e in X. If ci(e
′) < ci(e),

the edge is called strict. We say that G(X) admits a Pareto trading cycle
C if there is a cycle C in G(X) that contains at least one strict edge. We
say that allocation Y is a result of resolving trading cycle C if for each edge
(e, e′) ∈ C with e ∈ Xi, it holds that Yi = (Xi \ {e}) ∪ {e′}. Note that given
an allocation, the construction of G(X) and finding a cycle therein can be
done in polynomial time.

Lemma 6.1. For any allocation X, G(X) contains at most O(m2) edges,
and after resolving a trading cycle, the number of edges in G(X) strictly
decreases.

Proof. G(X) contains at most O(m2) edges since there are in total m items
corresponding to m vertices and each item has degree at most m. For any
agent i and e ∈ Xi, let δi(e) be the out-degree of e in G(X). Then the number
of edges in G(X) equals

∑
i∈N
∑

e∈Xi
δi(e). For any agent i and item e ∈ Xi,

if e is involved in the trading cycle, denote by r(e) the item following e, i.e.,
e→ r(e) is an edge in the trading cycle; if e is not involved, r(e) = e. Then
δi(e) ≥ δi(r(e)) since the items can only be exchanged with weakly better
ones. Note that since the trading cycle involves a strict edge, there exists
an agent i∗ and an item e∗ ∈ Xi∗ such that δi∗(e

∗) > δi∗(r(e
∗)). Thus after

resolving the trading cycle, the number of edges (i.e.,
∑

i∈N
∑

e∈Xi
δi(r(e)))

is strictly decreased.

Lemma 6.2. Resolving a Pareto trading cycle in a (weighted) PROPX allo-
cation preserves (weighted) PROPX.

Proof. Let X be a (weighted) PROPX allocation and Y be the result after
resolving one trading cycle in G(X). Let the agents involved in the trading
cycle C be NC . Since X is PROPX, for any e ∈ Xi

ci (Xi\ {e}) ≤ ci(M) · si.

For any i ∈ NC where Yi = Xi ∪ {α} \ {β} and β ∈ Xi, considering α ∈ Yi
gives

ci (Yi\ {α}) = ci (Xi\ {β}) ≤ ci(M) · si.

27

For any e ∈ Yi\ {α}, we have e ∈ Xi. Since ci (α) ≤ ci (β),

ci (Yi\ {e}) = ci ((Xi ∪ {α} \ {β}) \ {e})
= ci (Xi\ {e}) + (ci(α)− ci(β))

≤ ci (Xi\ {e}) .
Hence

ci (Yi\ {o}) ≤ ci (Xi\ {e}) ≤ ci(M) · si.
For any i /∈ NC where Yi = Xi, we have

ci (Yi) = ci (Xi) ≤ ci(M) · si.
Therefore, Y is (weighted) PROPX.

For instances with lexicographic or bi-valued cost functions, the following
lemma has been established for efficient checking of whether an allocation
is PO or not. We remark that the following lemma is not true if the cost
functions are general additive.

Lemma 6.3 ([7], [35]). An allocation X is not PO with respect to lexico-
graphic or bi-valued cost functions if and only if there exists a cycle in G(X)
which contains at least one edge corresponding to a strict preference.

Utilizing these results, we show that there exist efficient algorithms for
the computation of PROPX and PO allocations for instances when agents
have lexicographic or bi-valued cost functions, even if they have asymmetric
weights.

Proposition 6.3. For lexicographic or bi-valued cost functions with Assump-
tion (?), there exists a polynomial-time algorithm that computes allocations
that are (weighted) PROPX and PO for agents with asymmetric weights.

Proof. We only prove for lexicographic cost functions and the proof for bi-
valued cost functions is the same. We first use any existing polynomial-
time algorithm to compute a PROPX allocation for a group of agents with
asymmetric weights. From Lemma 6.3, we can check in O(nm) time whether
the allocation is PO by constructing G(X) and checking whether there is
a cycle in G(X) that contains at least one strict edge. If it is not, from
Lemma 6.3, we know that the allocation’s trading graph admits a Pareto
trading cycle. If we resolve such a cycle, it follows from Lemma 6.2 that
the new allocation is also (weighted) PROPX. By Lemma 6.1, there can be
at most nm such Pareto improvements until the process terminates with an
allocation that is both (weighted) PROPX and PO.

28

7. Conclusion

In this paper, we studied the fair allocation of indivisible chores under
the fairness notion of PROPX. We showed that PROPX allocations exist
and can be computed efficiently for both symmetric and asymmetric agents.
The returned allocations achieve the optimal guarantee on the price of fair-
ness. We also designed the optimal approximation algorithms to compute
(weighted) PROPX allocations with ordinal preferences. As byproducts, our
results imply a 2-approximate algorithm for APS allocations for chores, and
the existence of EFX and weighted EF1 allocations for IDO instances.

There are many future directions that are worth exploring. To name a
few, as we have discussed, the existence or approximation of EFX is less ex-
plored for chores than for goods. Furthermore, we proved that any WPROPX
allocation is 2-approximate APS, but it does not have a good guarantee for
weighted MMS defined in [9]. It is still unknown whether weighted MMS
admits constant approximations. Finally, we believe it is an important prob-
lem to investigate the compatibility between PROPX and Pareto optimality
in the general setting when all items have positive cost to all agents. We
discuss some challenges in Appendix D in this regard.

References

[1] H. Akrami and J. Garg. Breaking the 3/4 barrier for approximate max-
imin share. CoRR, abs/2307.07304, 2023.

[2] H. Akrami, J. Garg, and S. Taki. Improving approximation guarantees
for maximin share. arXiv preprint arXiv:2307.12916, 2023.

[3] G. Amanatidis, H. Aziz, G. Birmpas, A. Filos-Ratsikas, B. Li, H. Moulin,
A. A. Voudouris, and X. Wu. Fair division of indivisible goods: Recent
progress and open questions. Artif. Intell., 322:103965, 2023.

[4] G. Amanatidis, G. Birmpas, A. Filos-Ratsikas, A. Hollender, and A. A.
Voudouris. Maximum nash welfare and other stories about EFX. The-
oretical Computer Science, 863:69–85, 2021.

[5] G. Amanatidis, G. Birmpas, and E. Markakis. On truthful mechanisms
for maximin share allocations. In IJCAI, pages 31–37. IJCAI/AAAI
Press, 2016.

29

[6] G. Amanatidis, E. Markakis, and A. Ntokos. Multiple birds with one
stone: Beating 1/2 for EFX and GMMS via envy cycle elimination.
Theor. Comput. Sci., 841:94–109, 2020.

[7] H. Aziz, P. Biro, J. Lang, J. Lesca, and J. Monnot. Efficient reallocation
under additive and ordinal preferences. Theoretical Computer Science,
2019.

[8] H. Aziz, S. Brânzei, A. Filos-Ratsikas, and S. K. S. Frederiksen. The
adjusted winner procedure: Characterizations and equilibria. In IJCAI,
pages 454–460. AAAI Press, 2015.

[9] H. Aziz, H. Chan, and B. Li. Weighted maxmin fair share allocation of
indivisible chores. In IJCAI, pages 46–52. ijcai.org, 2019.

[10] H. Aziz, B. Li, and X. Wu. Approximate and strategyproof maximin
share allocation of chores with ordinal preferences. Mathematical Pro-
gramming, 2022.

[11] H. Aziz, H. Moulin, and F. Sandomirskiy. A polynomial-time algo-
rithm for computing a pareto optimal and almost proportional alloca-
tion. Oper. Res. Lett., 48(5):573–578, 2020.

[12] H. Aziz, G. Rauchecker, G. Schryen, and T. Walsh. Algorithms for max-
min share fair allocation of indivisible chores. In AAAI, pages 335–341.
AAAI Press, 2017.

[13] M. Babaioff, T. Ezra, and U. Feige. Fair-share allocations for agents
with arbitrary entitlements. EC, 2021.

[14] M. Babaioff, N. Nisan, and I. Talgam-Cohen. Competitive equilibrium
with indivisible goods and generic budgets. Mathematics of Operations
Research, 46(1):382–403, 2021.

[15] A. Baklanov, P. Garimidi, V. Gkatzelis, and D. Schoepflin. Achieving
proportionality up to the maximin item with indivisible goods. In AAAI,
pages 5143–5150. AAAI Press, 2021.

[16] A. Baklanov, P. Garimidi, V. Gkatzelis, and D. Schoepflin. Propm allo-
cations of indivisible goods to multiple agents. In IJCAI, pages 24–30.
ijcai.org, 2021.

30

[17] S. Barman, U. Bhaskar, and N. Shah. Optimal bounds on the price of
fairness for indivisible goods. In WINE, volume 12495 of Lecture Notes
in Computer Science, pages 356–369. Springer, 2020.

[18] S. Barman, A. Biswas, S. K. K. Murthy, and Y. Narahari. Groupwise
maximin fair allocation of indivisible goods. In AAAI, pages 917–924.
AAAI Press, 2018.

[19] S. Barman and S. K. Krishnamurthy. Approximation algorithms for
maximin fair division. In EC, pages 647–664. ACM, 2017.

[20] S. Barman and S. K. Krishnamurthy. On the proximity of markets with
integral equilibria. In AAAI, pages 1748–1755. AAAI Press, 2019.

[21] S. Barman, S. K. Krishnamurthy, and R. Vaish. Finding fair and efficient
allocations. In EC, pages 557–574. ACM, 2018.

[22] D. Baumeister, S. Bouveret, J. Lang, N. Nguyen, T. T. Nguyen,
J. Rothe, and A. Saffidine. Positional scoring-based allocation of indivisi-
ble goods. Autonomous Agents and Multi-Agent Systems, 31(3):628–655,
2017.

[23] X. Bei, X. Lu, P. Manurangsi, and W. Suksompong. The price of fairness
for indivisible goods. In IJCAI, pages 81–87. ijcai.org, 2019.

[24] B. Berger, A. Cohen, M. Feldman, and A. Fiat. (almost full) EFX exists
for four agents (and beyond). CoRR, abs/2102.10654, 2021.

[25] D. Bertsimas, V. F. Farias, and N. Trichakis. The price of fairness. Oper.
Res., 59(1):17–31, 2011.

[26] U. Bhaskar, A. R. Sricharan, and R. Vaish. On approximate envy-
freeness for indivisible chores and mixed resources. In APPROX-
RANDOM, volume 207 of LIPIcs, pages 1:1–1:23. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

[27] S. Bouveret and M. Lemâıtre. Characterizing conflicts in fair division
of indivisible goods using a scale of criteria. Auton. Agents Multi Agent
Syst., 30(2):259–290, 2016.

31

[28] E. Budish. The combinatorial assignment problem: Approximate com-
petitive equilibrium from equal incomes. Journal of Political Economy,
119(6):1061–1103, 2011.

[29] I. Caragiannis, J. Garg, N. Rathi, E. Sharma, and G. Varricchio. Exis-
tence and computation of epistemic efx allocations, 2022.

[30] I. Caragiannis, C. Kaklamanis, P. Kanellopoulos, and M. Kyropoulou.
The efficiency of fair division. In WINE, volume 5929 of Lecture Notes
in Computer Science, pages 475–482. Springer, 2009.

[31] I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and
J. Wang. The unreasonable fairness of maximum nash welfare. ACM
Trans. Economics and Comput., 7(3):12:1–12:32, 2019.

[32] M. Chakraborty, A. Igarashi, W. Suksompong, and Y. Zick. Weighted
envy-freeness in indivisible item allocation. In AAMAS, pages 231–
239. International Foundation for Autonomous Agents and Multiagent
Systems, 2020.

[33] B. R. Chaudhury, J. Garg, and K. Mehlhorn. EFX exists for three
agents. In EC, pages 1–19. ACM, 2020.

[34] V. Conitzer, R. Freeman, and N. Shah. Fair public decision making. In
EC, pages 629–646. ACM, 2017.

[35] S. Ebadian, D. Peters, and N. Shah. How to fairly allocate easy and
difficult chores. In AAMAS, pages 372–380. International Foundation
for Autonomous Agents and Multiagent Systems (IFAAMAS), 2022.

[36] A. Farhadi, M. Ghodsi, M. T. Hajiaghayi, S. Lahaie, D. M. Pennock,
M. Seddighin, S. Seddighin, and H. Yami. Fair allocation of indivisible
goods to asymmetric agents. J. Artif. Intell. Res., 64:1–20, 2019.

[37] U. Feige and X. Huang. On picking sequences for chores. In EC, pages
626–655. ACM, 2023.

[38] U. Feige, A. Sapir, and L. Tauber. A tight negative example for MMS
fair allocations. In WINE, volume 13112 of Lecture Notes in Computer
Science, pages 355–372. Springer, 2021.

32

[39] J. Garg and A. Murhekar. Computing pareto-optimal and almost envy-
free allocations of indivisible goods. CoRR, abs/2204.14229, 2022.

[40] J. Garg, A. Murhekar, and J. Qin. Fair and efficient allocations of
chores under bivalued preferences. In AAAI, pages 5043–5050. AAAI
Press, 2022.

[41] J. Garg, A. Murhekar, and J. Qin. Improving fairness and efficiency
guarantees for allocating indivisible chores. CoRR, abs/2212.02440,
2022.

[42] J. Garg and S. Taki. An improved approximation algorithm for maximin
shares. In EC, pages 379–380. ACM, 2020.

[43] D. Halpern and N. Shah. Fair and efficient resource allocation with
partial information. CoRR, abs/2105.10064, 2021.

[44] S. Heydrich and R. van Stee. Dividing connected chores fairly. Theor.
Comput. Sci., 593:51–61, 2015.

[45] F. Höhne and R. van Stee. Allocating contiguous blocks of indivisible
chores fairly. Information and Computation, page 104739, 2021.

[46] H. Hosseini and K. Larson. Multiple assignment problems under lexico-
graphic preferences. In AAMAS, pages 837–845. International Founda-
tion for Autonomous Agents and Multiagent Systems, 2019.

[47] H. Hosseini, S. Sikdar, R. Vaish, and L. Xia. Fair and efficient alloca-
tions under lexicographic preferences. In AAAI, pages 5472–5480. AAAI
Press, 2021.

[48] X. Huang and P. Lu. An algorithmic framework for approximating
maximin share allocation of chores. In EC, pages 630–631. ACM, 2021.

[49] X. Huang and E. Segal-Halevi. A reduction from chores allocation to
job scheduling. In EC, page 908. ACM, 2023.

[50] R. E. Korf. A complete anytime algorithm for number partitioning.
Artificial Intelligence, 106(2):181–203, 1998.

[51] D. Kurokawa, A. D. Procaccia, and J. Wang. Fair enough: Guaranteeing
approximate maximin shares. J. ACM, 65(2):8:1–8:27, 2018.

33

[52] B. Li, Y. Li, and X. Wu. Almost (weighted) proportional allocations for
indivisible chores. In WWW, pages 122–131. ACM, 2022.

[53] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately
fair allocations of indivisible goods. In EC, pages 125–131. ACM, 2004.

[54] H. Moulin. Fair division in the internet age. Annual Review of Eco-
nomics, 11:1–37, 2019.

[55] B. Plaut and T. Roughgarden. Almost envy-freeness with general valu-
ations. SIAM J. Discret. Math., 34(2):1039–1068, 2020.

[56] J. Robertson and W. Webb. Cake-cutting algorithms: Be fair if you
can. CRC Press, 1998.

[57] H. Steihaus. The problem of fair division. Econometrica, 16:101–104,
1948.

[58] X. Wu, C. Zhang, and S. Zhou. Weighted EF1 allocations for indivisible
chores. In EC, page 1155. ACM, 2023.

34

Appendix A. Price of Fairness

In this section, we show that the allocation returned by Algorithm 2
achieves the optimal price of fairness (PoF) among all (weighted) PROPX
allocations. Price of fairness is used to measure how much social welfare we
lose if we want to maintain fairness among the agents. In this section, we
always assume ci(M) = 1 for all agents i ∈ N . Let Ω(I) be the set of all
WPROPX allocations for instance I, the price of fairness is defined as the
worst-case ratio between the optimal (minimum) social cost opt(I) without
any constraints and the social cost under WPROPX allocations:

PoF = max
I

min
X∈Ω(I)

sc(X)

opt(I)
.

Note that for any instance I, opt(I) is obtained by allocating every item to
the agent who has smallest cost on it. Moreover, the assumption of ci(M) = 1
for all agent i ∈ N is necessary: if there exist two agents i and j having very
different values of ci(M) and cj(M), then we have unbounded PoF even in
the unweighted and IDO setting because the socially optimal allocation can
allocate all items to one agent while WPROPX allocations cannot.

Lemma Appendix A.1. Letting X be the allocation returned by Algo-
rithm 2, we have sc(X) ≤ 1.

Proof. Let i ∈ N be the agent that receives the last item m. By Claim 4.1, for
all agent j 6= i, we have ci(Xj) ≥ cj(Xj), because agent i is active through-
out the whole allocation process. Hence we have sc(X) =

∑
j∈N cj(Xj) ≤∑

j∈N ci(Xj) = ci(M) = 1.

We show that Algorithm 2 achieves the optimal PoF.

Theorem Appendix A.1. For the unweighted case, the PROPX allocation
returned by Algorithm 2 achieves the optimal PoF, which is Θ(n).

Proof. We first prove that the PoF is Ω(n) by giving an unweighted instance
I for which any PROPX allocation X satisfies sc(X) ≥ (n/6) · opt(I). In I,
we have n agents and m = n items with cost functions shown in the table
below.

35

ci(e1) · · · ci(en−1) ci(en)
1 2/n2 · · · 2/n2 1− 2(n− 1)/n2

2 1/n · · · 1/n 1/n
...

...
. . .

...
...

n 1/n · · · 1/n 1/n

For the above instance, we have

opt(I) = (n− 1) · 2

n2
+

1

n
<

3

n
.

However, any PROPX allocation X allocates at most n/2 + 1 items to agent
1 because otherwise the bundle she receives has cost larger than 1/n even
after removing one item. Hence we have

sc(X) ≥ (
n

2
+ 1) · 2

n2
+ (

n

2
− 1) · 1

n
>

1

2
≥ n

6
· opt(I).

Next, we show that for any unweighted instance I, the allocation X
computed by Algorithm 2 satisfies sc(X) ≤ n · opt(I). By Lemma Appendix
A.1, it suffices to consider the case when opt(I) < 1/n. We show that in this
case, we have sc(X) = opt(I). This is because, before any agent becomes
inactive, we always allocate an item to the agent that has smallest cost on the
item, as in the socially optimal allocation. Since opt(I) < 1/n, Algorithm 2
never turns any agent into inactive, which implies that sc(X) = opt(I).

We note that the hard instance used to show Theorem Appendix A.1 is
IDO, which means the PoF is Θ(n) even for the unweighted IDO instances.
For the weighted case, we have the following result.

Theorem Appendix A.2. For the weighted case, we have unbounded PoF.
For IDO instances, Algorithm 2 computes a WPROPX allocation with opti-
mal PoF, which is Θ(m).

Proof. We first show that the PoF is unbounded for weighted non-IDO in-
stances by giving the following hard instance I (with s1 = 1−ε2 and s2 = ε2)
shown in the table below. It is easy to see that opt(I) = 2ε. However, since
any WPROPX allocation X allocates at most one item to agent 2, we have
sc(X) ≥ 1/2. Since ε > 0 can be arbitrarily close to 0, we have an unbounded
PoF for the weighted non-IDO instances.

36

ci(e1) ci(e2) ci(e3)
1 0.5 0.5 0
2 ε ε 1− 2ε

Next, we show that the PoF is Ω(m) for weighted IDO instances, by giving
the following hard instance.

ci(e1) ci(e2) ci(e3) · · · ci(em)
1 0.5 0.5 0 · · · 0
2 1/m 1/m 1/m · · · 1/m

It is easy to see that opt(I) = 2/m. However, for s1 = 1 − 1/m2 and
s2 = 1/m2, since any WPROPX allocation X allocates at most one item to
agent 2, we have sc(X) ≥ 1/2 ≥ m/4 · opt(I).

Finally, we show that the weighted IDO instances the allocation X re-
turned by Algorithm 2 satisfies sc(X) ≤ m · opt(I). By Lemma Appendix
A.1, sc(X) ≤ 1. Moreover, for IDO instances,

opt(I) =
∑
e∈M

min
i∈N
{ci(e)} ≥ min

i∈N
{ci(e1)} ≥ 1

m
≥ 1

m
· sc(X).

Hence allocation X achieves the asymptotically optimal PoF.

Appendix B. Proof of Lemma 3.1

Proof. Envy cycle elimination algorithm runs inO(n3m) time [53, 26]. Roughly,
by allocating a new item to an agent, at most n edges will be added to the
graph, and by resolving a cycle, at least two edges will be removed. There-
fore, there will be O(mn) rounds of cycle resolution. In each round, finding
a cycle needs O(n2) time, resulting in total running time O(n3m).

In the following, we prove by induction that the returned allocation is
EFX. First, if no item is allocated to any agent, the allocation is trivially
EFX. Let X be a partial and EFX allocation at the beginning of any round
in Algorithm 1. Let X0 be the set of all unassigned items. We prove that at
the end of this round, the new partial allocation is also EFX. We show this
by proving the following two claims.

Claim Appendix B.1. Adding a new item to the allocation preserves EFX.

Let i be any sink agent in GX . By definition ci(Xi) ≤ ci(Xj) for all j ∈ N .
Let e be the item with largest cost in X0, which will be added to Xi. Since

37

the items are assigned from the most costly to least costly, and all agents
have the same ordinal preference, ci(e

′) ≥ ci(e) for all e′ ∈ Xi. Thus for any
e′ ∈ Xi ∪ {e} and any j 6= i,

ci(Xi ∪ {e} \ {e′}) ≤ ci(Xi ∪ {e} \ {e}) = ci(Xi) ≤ ci(Xj).

Thus Claim Appendix B.1 holds.

Claim Appendix B.2. Resolving a top-trading envy cycle preserves EFX.

Suppose we reallocate the bundles according to a top-envy cycle C =
(i1, . . . , id) in GX . For any agent i who is not in the cycle, her bundle is
not changed by the reallocation. Although other bundles are reallocated, the
items in each bundle are not changed and thus the cycle-swapped allocation
is still EFX for agent i. For any agent i in C, she will obtain her best bundle
in this partial allocation X, and hence the cycle-swapped allocation is EF
for agent i. Thus Claim Appendix B.2 holds. Combining the two claims, at
the end of each round, the partial allocation remains EFX.

Appendix C. Proof of Lemma 4.1

Proof. In the following, we explicitly write I = (N, s,M, c) to denote an
instance with item set M , agent set N , weight vector s = (s1, . . . , sn), and
cost functions c = (c1, . . . , cn). Given any instance I = (N, s,M, c), we
construct an IDO instance I ′ = (N, s,M, c′) where c′ = (c′1, . . . , c

′
n) is defined

as follows. Note that the construction of the IDO instance can be done in
O(mn logm) time. Let σi(j) ∈ M be the j-th most costly item under cost
function ci. Let c′i(ej) = ci(σi(j)). Thus with cost functions c′, the instance
I ′ is IDO, in which all agents i has

c′i(e1) ≥ c′i(e2) ≥ · · · ≥ c′i(em).

Then we run the algorithm for IDO instances on instance I ′, and get an
α-WPROPX allocation X′ for I ′. By definition, for all agents i ∈ N we have

c′i(X
′
i \ {e}) ≤ α · si, ∀e ∈ X ′i.

In the following, we use X′ to guide us on computing a α-WPROPX
allocation X for instance I.

Recall that in the IDO instance I ′, for all agents, item e1 has the max-
imum cost and item em has the minimum cost. We initialize Xi = ∅ for

38

all i ∈ N and let X0 = M be the unallocated items. Sequentially for
j = m,m− 1, . . . , 1, we let the agent i that receives item ej under allocation
X′, i.e., ej ∈ X ′i, pick her favourite unallocated item. Note that the order
of items are well-defined in the IDO instance I ′. Specifically, we move item
e = arg mine′∈X0{ci(e′)} from X0 to Xi. Thus we have |Xi| = |X ′i| for each
agent i ∈ N . Furthermore, we show that there is a bijection fi : Xi → X ′i
such that for any item e ∈ Xi, we have ci(e) ≤ c′i(e

′), where e′ = fi(e).
Recall that c′i(ej) ≥ c′i(ek) for all k ≥ j. By the way c′i is constructed, we
know that there are at least m − j + 1 items that have cost at most c′i(ej),
under cost function ci. Observe that when e is chosen from X0, we have
|X0| ≥ j. Hence there must exists an item e′ in X0 with cost ci(e

′) ≤ c′i(ej).
Since e has minimum cost among items in X0 under cost function ci, we have
ci(e) ≤ c′i(ej). Therefore, for any agent i and any e ∈ Xi, we have

ci(Xi \ {e}) ≤ c′i(X
′
i \ {fi(e)}) ≤ α · si,

where the last inequality follows because X′ is α-WPROPX for instance I ′.
Finally, it is easy to verify that the MMS benchmark in both instances are
the same, while the cost of each agent in the general instance is smaller.
Thus the algorithm guarantees the same approximation ratio for MMS.

Appendix D. Challenges in Finding PROPX and PO Allocations

To find an allocation that is PROPX and PO, a naive approach would
be to apply Pareto improvements on PROPX allocations. However, there
are several challenges. First, checking whether a given allocation is PO is
coNP-hard.

Proposition Appendix D.1. Under additive cost functions, testing whether
a given allocation is PO or not is weakly coNP-complete, even for n = 2 with
identical weights.

Proof. The proof is an adaptation of a similar result in [7] for positive util-
ities. First, given an allocation X = (X1, . . . , Xn), testing whether X is PO
is in coNP since for any allocation X′ one can test whether X is Pareto dom-
inated by X′ in linear time by comparing every agent’s cost under the two
allocations.

Next, we design a polynomial-time reduction from the PARTITION prob-
lem, which is a well-known NP-complete problem [50]. An instance of PAR-
TITION is described by a set of t elements E = {e1, . . . , et} where each

39

ej ∈ E has integer weight w(ej) such that
∑

ei∈E w(ei) = 2M . The question
is to decide whether there is a balanced partition of E i.e., S ⊆ E such that∑

ei∈S w(ei) =
∑

ei∈E\S w(ei) = M . Given any PARTITION instance, we

construct a fair allocation instance with t+ 1 items {o+, o1, . . . , ot} and two
agents {1, 2}. Agent 1’s cost function is: c1(o+) = M and c1(oi) = w(ei)
for all i ∈ {1, . . . t}. Agent 2’ cost function is: c2(o+) = M + ε, with
0 < ε < 1, and c2(oi) = w(ei) for all i ∈ {1, . . . , t}. Consider allocation
X with X1 = {o+} and X2 = O \ {o+}. Then X is PO if and only if there is
a balanced partition of E.

The second difficulty is that given an arbitrary PROPX allocation X that
is not PO, any Pareto improvement of X makes X not PROPX, as shown
by the following example.

Example Appendix D.1. Consider an instance with four items and two
agents with costs shown in the following table.

ci(e1) ci(e2) ci(e3) ci(e4)

1 0.32 0.27 0.11 0.3

2 0.13 0.05 0.38 0.44

The allocation X shown in squares, i.e., X1 = {e2, e3} and X2 = {e1, e4},
is PROPX but is not PO because it can be Pareto improved by allocation X′

shown below, i.e., X ′1 = {e4} and X ′2 = {e1, e2, e3}. Allocation X′ is not
PROPX since c2(X ′2 \ {e2}) = 0.51 > 0.5.

ci(e1) ci(e2) ci(e3) ci(e4)

1 0.32 0.27 0.11 0.3

2 0.13 0.05 0.38 0.44

Actually, X′ is the only allocation that Pareto improves X. Suppose any
allocation Y that Pareto dominates X. Agent 1’s cost can be decreased by
either giving one of her items to agent 2 without receiving any other item,
or giving out both items e2 and e3 in exchange for either item e1 or e4 with
a lower total cost. The first case is not acceptable since it strictly increases
agent 2’s cost. For the second case, if agent 1 gets item e1, then items e2, e3

and e4 are assigned to agent 2 which increases her cost since

c2(Y2) = c2({e2, e3, e4}) = 0.87 > 0.57 = c2(X2).

40

Then the only option is that agent 1 gets e4, with

c1(Y1) = c1(e4) = 0.3 < c1(X1), and

c2(Y2) = c2({e1, e2, e3}) = 0.56 < c2(X2).

Hence X′ is the only allocation that Pareto dominates X.
Therefore, for the allocation X, there does not exist a Pareto improvement

over it that preserves PROPX.

41

