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Abstract

When allocating objects among agents with equal rights, people often evaluate the fairness
of an allocation rule by comparing their received utilities to a benchmark share – a function
only of her own valuation and the number of agents. This share is called a guarantee if
for any profile of valuations there is an allocation ensuring the share of every agent. When
the objects are indivisible goods, Budish [J. Political Econ., 2011] proposed MaxMinShare,
i.e., the least utility of a bundle in the best partition of the objects, which is unfortunately
not a guarantee. Instead, an earlier pioneering work by Hill [Ann. Probab., 1987] proposed
for a share the worst-case MaxMinShare over all valuations with the same largest possible
single-object value. Although Hill’s share is more conservative than the MaxMinShare, it
is an actual guarantee and its computation is elementary, unlike that of the MaxMinShare
which involves solving an NP-hard problem. We apply Hill’s approach to the allocation of
indivisible bads (objects with disutilities or costs), and characterise the tight closed form of
the worst-case MinMaxShare for a given value of the worst bad. We argue that Hill’s share
for allocating bads is effective in the sense of being close to the original MinMaxShare value,
and there is much to learn about the guarantee an agent can be offered from the disutility
of her worst single bad. Furthermore, we prove that the monotonic cover of Hill’s share is
the best guarantee that can be achieved in Hill’s model for all allocation instances.
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1 Introduction

The task is to fairly allocate a given pile of indivisible objects among agents with equal rights
but different preferences. Since the very beginning of the fair division literature (Steinhaus,
1949), allocation rules have been evaluated in part by the worst-case utility they guarantee to
each participant over all possible utility profiles of the other agents. The higher the guarantee
the safer it is for an agent clueless about the others’ utilities and actions to participate in the
allocation process defined by the rule.

Formally, the guarantee offered by an allocation rule is a mapping from any utility function to
the corresponding worst-case utility for an agent. This function only depends upon the number
of other agents (but not on the particulars of the agents) and the domain where their utilities
come from. When the objects are divisible and desirable (i.e., goods), and utilities are additive,
the optimal (largest feasible) guarantee is 1

n ·vi(M), where M is the set of goods, n is the number
of agents, and i is a generic agent with utility function vi Dubins and Spanier (1961). But in all
the important practical contexts where the objects are indivisible while utilities remain additive,
the search for maximal guarantees (those that cannot be improved over the entire domain of
utilities) cannot be that simple. The difficulty is obvious when we consider the “one diamond
and several worthless rocks” example: unless we throw away the diamond, all agents but one
end up with a negligible fraction of vi(M).

To capture exactly the diamond effect when indivisible goods are distributed, the concept of
MaxMinShare (Budish, 2011) has been intensely studied over the last decade (Amanatidis et al.,
2017; Kurokawa et al., 2018; Huang and Lu, 2021). An agent’s MaxMinShare is motivated by
an imaginary divide-and-choose experiment: the agent gets the chance to partition the objects
into n bundles, but is the last one to choose one bundle. Then, the agent’s MaxMinShare is
the utility of her worst share in the best n-partition of the objects. MaxMinShare bears some
disadvantages. On the one hand, the definition is not trivial and computing its value involves
solving an NP-hard problem. On the other hand, in some rare cases, the MaxMinShare is not
a feasible guarantee (Procaccia and Wang, 2014); so far the best-known approximation is that
a (34 + o(1)) fraction of MaxMinShare can be guaranteed and implemented in polynomial time
(Ghodsi et al., 2018; Garg and Taki, 2021).

Back to 1980s, Hill (1987) also investigated how the indivisibility of the objects affect the
agent’s guaranteed share by restricting attention to additive utility functions v such that v(M) =
1 (without loss of generality) and the most valuable object of v is worth α, 0 < α < 1; we
write V(α) for this subdomain of additive valuations. Hill proposed to study the worst-case
MaxMinShare among all valuations in V(α), which is referred to as the Hill’s share throughout
this paper. In (Hill, 1987), Hill computed for every n ≥ 2 a function Vn : [0, 1] → [0, 1

n ], which
lower-bounds Hill’s share. By definition, Vn(α) is also a lower bound on the MaxMinShare of
every utility in V(α). Depending on α the guarantee Vn(α) may or may not improve upon the 3

4 -
approximate MaxMinShare guarantee, but its great advantage is that whether a given allocation
meets the guarantee for a given utility is immediately verifiable. Furthermore, Hill proved that
if every agent’s utility is in V(α), it is always possible to simultaneously give each agent a share
worth at least Vn(α), i.e., Vn(·) is a guarantee. Markakis and Psomas (2011) proved a stronger
result: the share Vn(αi) where maxe∈M vi(e) = αi is a bona fide guarantee over the full domain
of additive and nonnegative utilities. Moreover, an allocation implementing these individual
guarantees can be computed in polynomial time. Gourvès et al. (2015) found that Vn(α) is not
the tight characterisation of Hill’s share and proved a tighter function. An interesting fact is
that the tight function is not monotone in α, but its exact computation is still open.

All the aforementioned work, as well as the majority of fair division literature, focuses on the
allocation of goods, and the mirror problem of bads (undesirable objects like chores, liabilities
when a partnership is dissolved, etc.; see Lenstra et al. (1990)) is not as well understood as that
of goods, which motivates the current work.
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1.1 Our Problem and Results

We apply Hill’s approach to the allocation of indivisible bads and prove a set of results parallel
to those just mentioned. The diamond effect now becomes the “chore from hell” effect where
the disutility is concentrated in a single bad, and now V(α) collects all disutility functions where
the value of the worst bad equals α, maintaining the normalisation v(M) = 1.

Our results for bads resemble those just mentioned for goods, and in addition, they make
the connection between Hill’s share and MinMaxShare (the largest disutility of a share in the
best partition of the bads). To be more precise, we compute first the tight characterisation of
Hill’s share, refined to problems with a given number m of bads, i.e., the exact upper bound
∆⊕

n (α;m) of the MinMaxShare in the domain V(α;m), where V(α;m) contains the valuations
over m objects with the highest disutility being α. This result is stated in Theorem 1. If m is
not restricted, i.e., V(α) =

⋃
m V(α;m) and ∆⊕

n (α) = maxm∆⊕
n (α;m), we illustrate the function

∆⊕
n (α) for n = 2, 3 in Fig. 1. Just like Gourvès et al. (2015) observed for the problem of goods,

this function is not monotone in α. In passing, we tighten the bounds proposed by Hill (1987)
and Gourvès et al. (2015) for the worst-case MaxMinShare in the two-agent problem of goods;
see Remark 1.

Figure 1: Hill’s share ∆⊕
n (α) when n = 2

and 3 and m is not restricted.
Figure 2: The ratio between the upper and
lower bounds of the MinMaxShare of valua-
tions in V(α). 4/3 and 11/9 are two fractions
of the MinMaxShare known to be achievable.

Compared to the MinMaxShare, Hill’s share ∆⊕
n (α;m) is immediately verifiable, whereas

deciding whether (a multiple of) the MinMaxShare is met at a given allocation involves solving
an NP-hard problem. Moreover, the function α → ∆⊕

n (α;m) relating the guaranteed share to
the disutility of the worst bad (relative to total disutility) is a transparent hard design constraint
of which all participants should be aware. Although ∆⊕

n (α;m) seems more conservative than
the MinMaxShare of a specific disutility function, we argue that ∆⊕

n (α;m) is approximately as
effective as MinMaxShare. First, ∆⊕

n (α;m) is at most twice the MinMaxShare of every disutility
in V(α;m). We plot the exact ratio of ∆⊕

n (α) and the best MinMaxShare of disutilities in V(α)
for every α in Fig. 2 when n = 2, 10 and 100. As we can see, although the largest ratio may
reach 2 (only happens when n is large), for most values of α, the ratio is not far from 1. In
particular, ∆⊕

n (α) outperforms the fractions of the MinMaxShare known to be implementable (43
by Barman and Krishnamurthy (2020) and 11

9 by Huang and Lu (2021)) for most α no matter
what values n has. Besides the above worst-case comparison, in Section 5, we conduct numerical
experiments with synthetic and real-world data to illustrate the real distances between Hill’s
share and MinMaxShare. The experiments show that Hill’s share is actually very close to (e.g.,
within 1.1 fraction of) the MinMaxShare for the majority of the instances.

Finally, we obtain the main result of this work – a counterpart for bads of Hill’s guarantee for
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goods improved by Markakis and Psomas (2011). Letting Vn(α;m) denote the monotonic cover
of ∆⊕

n (α;m) with respect to α, Theorem 2 shows that the share Vn(αi;m) is a guarantee over the
full domain of additive disutilities with m bads. We also provide an algorithm to implement this
guarantee in polynomial time. To the best of our knowledge no other similarly simple guarantee
for allocating bads has been identified.

1.2 More Relevant Literature

The properties known as proportionality up to one object (Prop1) and up to any object (PropX)
offer different relaxations of the equal share 1

nvi(M) when the objects (goods or bads) are
indivisible Moulin (2019); Aziz et al. (2020). These relaxations require the equal share to be
satisfiable if at most one object is added or removed. Like the Hill’s guarantees for goods or
bads we discuss here, they are immediately verifiable, but unlike these they are not always
preserved by Pareto improvements, a serious limitation of their implementation. They also do
not provide agents with any guaranteed utility or disutility. The same remark applies to the
popular ex-post tests no envy up to one object, or up to any object Lipton et al. (2004); Budish
(2011); Caragiannis et al. (2019). Another easily verifiable test is the truncated proportional
share (ATP) bound of Babaioff et al. (2022), but unlike Hill’s guarantees, it improves upon the
MaxMinShare for goods so it is not a feasible guarantee.

Intuitively, the allocation of undesirable bads is the mirror image of that of goods. However,
adapting the results is not a simple matter of switching signs. For instance when objects are
indivisible the approximations Prop1 and PropX behave quite differently for goods and bads
Moulin (2019); Aziz et al. (2020).1 Our results confirm this general observation: in our case the
general allure of the critical functions ∆⊕

n is the same for goods and for bads, but the details
and the proofs are quite different. We refer the readers to recent surveys by Moulin (2019) and
Aziz et al. (2022) for a more detailed discussion on the fair division of indivisible goods and
bads. In particular, Aziz et al. (2022) explicitly listed computing Hill’s guarantee for bads as an
open problem.

2 Preliminaries

For any positive integer k, let [k] = {1, . . . , k}. We consider allocating m indivisible objects,
denoted by M = [m], among n agents, and let Add(M) be the domain made of the nonnegative
additive disutility functions v on object set M , normalised without loss of generality, as follows

v(S) =
∑
e∈S

v({e}) for all S ⊆M and v(M) = 1.

Following the convention of the literature, disutility functions are also called valuations. For
simplicity, we write v(e) to represent v({e}) for each e ∈M . For any α ∈ [0, 1], the subdomain
V(α;m) ⊆ Add(M) is defined by the property maxe∈M v(e) = α and U(α;m) by v(e) ≤ α for
all e ∈ M . According to the definitions, V(α;m) ⊆ U(α;m) for any valid pair of α and m.
Note that, since the functions are all normalised, V(α;m) is only well defined if α × m ≥ 1,
equivalently for m ≥ m∗ = ⌈ 1α⌉ (the upper integer part of 1

α).
An allocation, denoted by A = (A1, . . . , An), is a partition of M into n disjoint subsets of

objects; note that some of these subsets can be empty. The set of all allocations is denoted by
Xn(M). The MinMaxShare (MMS), when there are n agents, of the disutility v ∈ Add(M) is
defined as

MMSn(v) = min
A∈Xn(M)

max
1≤ℓ≤n

v(Aℓ).

1See also Bogomolnaia et al. (2019) for the competitive equilibrium from equal incomes when objects are
divisible.
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We next define the upper and lower bounds of MinMaxShare among all disutilities in V(α;m),

∆⊕
n (α;m) = max

v∈V(α;m)
MMSn(v); and

∆⊖
n (α;m) = min

v∈V(α;m)
MMSn(v).

The upper bound ∆⊕
n (α;m) (i.e., the worst-case MinMaxShare) is called Hill’s share, and we

use these terms interchangeably in this paper.
It is not difficult to obtain the below formula of ∆⊖

n (α;m), whose formal proof is in the
appendix.

Lemma 1 Given 0 < α < 1, n ≥ 2, and m ≥ ⌈ 1α⌉, ∆
⊖
n (α;m) is as follows:

∆⊖
n (α;m) =


α, if α > 1

n ,
1
n , if α = 1

kn , or 1
(k+1)n < α < 1

kn and m ≥ kn+ n

kα+ 1−knα
m−kn , if 1

(k+1)n < α < 1
kn and m ≤ kn+ n− 1

for some integer k ≥ 1.

Computing ∆⊕
n (α;m) is non-trivial, as shown in Section 3, but the following lemma, proved

in the appendix, presents two simple properties.

Lemma 2 (1) ∆⊕
n (α;m) is weakly decreasing in n; (2) ∆⊕

n (α;m) is weakly increasing in m
from ⌈ 1α⌉ to ⌈

2
α⌉ − 1 and constant thereafter.

By the second property in Lemma 2, and also following Hill (1987); Markakis and Psomas
(2011); Gourvès et al. (2015), we also consider the case when m is not restricted, or equivalently,
m =∞. Let V(α) =

⋃
m V(α,m) and U(α) =

⋃
m U(α;m). Accordingly, we have

∆⊕
n (α) = max

v∈V(α)
MMSn(v); and

∆⊖
n (α) = min

v∈V(α)
MMSn(v).

By Lemma 1, ∆⊖
n (α) = max{α, 1/n}.

Hill’s share ∆⊕
n (α;m) (and ∆⊕

n (α)) behave much like the MinMaxShare in the following
senses. First, for any v ∈ V(α;m) there is an allocation (A1, . . . , An) such that v(Ai) ≤ ∆⊕

n (α;m)
for all i. This follows from the definition of the MinMaxShare plus that ∆⊕

n (α;m) is an upper
bound of the MinMaxShare. Second, the max in the definition of ∆⊕

n (α;m) is achieved by some
v∗ ∈ V(α;m); that is, ∆⊕

n (α;m) = MMSn(v
∗). This is because V(α;m) is a compact set and all

the functions are continuous. Then we know that for any allocation (B1, . . . , Bn) there is some
i such that v∗(Bi) ≥ ∆⊕

n (α;m). Note that these two facts have nothing to do with what the
function ∆⊕

n (α;m) actually looks like and they can be easily adapted to ∆⊕
n (α).

3 Characterising Hill’s Share

3.1 Main Result

We now characterise Hill’s share, i.e., the exact upper bound of the MinMaxShare values,
∆⊕

n (α;m) and ∆⊕
n (α). For any integers n ≥ 2 and k ≥ 0, define the following real intervals:

D(n, k) =

(
1

kn+ n+ 1
,

k + 2

n(k + 1)2 + k + 2

]
I(n, k) =

(
k + 2

n(k + 1)2 + k + 2
,

1

kn+ 1

]
.
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It is not hard to check that all the intervals are well-defined, non-overlapping, and
⋃

k≥0(D(n, k)∪
I(n, k)) = (0, 1].

Our first main theorem gives the tight characterisation of Hill’s share.

Theorem 1 For any 0 < α < 1, n ≥ 2, and m ≥ ⌈ 1α⌉,

∆⊕
n (α;m) =


k+2
k+1 ·

1−α
n , if α ∈ D(n, k) and m ≥ kn+ n+ 1,

(k + 1)α, if α ∈ D(n, k) and m ≤ kn+ n,
(k + 1)α, if α ∈ I(n, k)

(1)

for any integers n ≥ 2 and k ≥ 0 except n = 2 and simultaneously k = 1. If n = 2 and k = 1,
∆⊕

2 (
1
3 ; 3) =

2
3 , ∆

⊕
2 (α; 4) = 2α for α ∈ [14 ,

1
3 ], and ∆⊕

2 (α; 5) is as follows:

∆⊕
2 (α; 5) =

{
3−3α

4 , if α ∈ (15 ,
3
11 ],

2α, if α ∈ ( 3
11 ,

1
3 ],

(2)

and for m ≥ 6,

∆⊕
2 (α;m) =


3−3α

4 , if α ∈ (15 ,
7
27 ]

α+ 2−2α
5 , if α ∈ ( 7

27 ,
2
7 ]

2α, if α ∈ (27 ,
1
3 ].

(3)

Theorem 1 directly implies the result when the number of objects is not restricted, as shown
in the following corollary.

Corollary 1 For any 0 < α < 1, n ≥ 2, ∆⊕
n (α) = max

m≥⌈ 1
α
⌉
∆⊕

n (α;m).

Actually, Corollary 1 is a special case of Theorem 1 when m is sufficiently large (e.g., m ≥
⌈ 2α⌉ − 1 by Lemma 2). Recall we illustrated ∆⊕

2 (α) and ∆⊕
3 (α) in Fig. 1. We observe two

interesting and somewhat unintuitive facts about Theorem 1. First, ∆⊕
n (·) is not monotone in

α, just like Gourvès et al. (2015) observed for the problem with goods. To characterise ∆⊕
n (α;m),

we want to understand the worst-case disutility in V(α;m), for which the objects can be hardly
partitioned into bundles with similar disutilities. Intuitively, when the single-object disutility
gets larger, it becomes harder to find such a balanced partition. However, this turns out to be
imprecise. Second, the case of n = 2 makes a difference from n ≥ 3. When n = 2 and k = 1,
there are three steps in ∆⊕

n (·): the worst-case MinMaxShare has two increasing intervals with
different slops following a decreasing interval. For all the other values of n and k, there are two
intervals with one decreasing and the other increasing.

Remark 1 When n = 2 the problem of bads and that of goods are the same, since maximising
the minimum bundle by partitioning the objects into two bundles is equivalent to minimising the
maximum bundle. For n = 2, Gourvès et al. (2015) provided a lower bound of the MaxMinShare
for goods which is not tight. It can be verified that 1−∆⊕

2 (α) is strictly larger than their bound
when α ∈ (15 ,

3
10) (Definition 2 in (Gourvès et al., 2015)). Thus, as a byproduct, Corollary 1

improves the result in Gourvès et al. (2015) for goods with n = 2 by giving the tight worst-case
bound, i.e.,

min
v∈V(α)

max
A∈X2(M)

min
1≤ℓ≤2

v(Aℓ) = 1−∆⊕
2 (α).

In Remark 2, we show how to extend this result to two non-identical disutilities.
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3.2 Roadmap for the Proof of Theorem 1

As we have discussed, after m reaches a certain value (e.g., m ≥ ⌈ 2α⌉ − 1 by Lemma 2), Hill’s
share does not increase anymore, and thus Corollary 1 is a special case of Theorem 1 when m is
sufficiently large. Therefore, in this subsection, we first prove Corollary 1, and in the appendix,
we carefully discuss Hill’s share when m is not sufficiently large, which will complete the proof
of Theorem 1 accordingly. Further, we also defer the proof of case n = 2 and k = 1 to the
appendix, which makes a difference from the other cases and requires a more involved analysis.

We prove Corollary 1 by contradiction, and assume that there exists a disutility v ∈ V(α)
whose MinMaxShare is larger than ∆⊕

n (α). Let A = (A1, . . . , An) be a lexicographical MinMax
allocation of v; that is, the largest disutility of bundles in A is the minimised over all allocations,
and among these allocations the second largest disutility is minimised, and so on. Without loss
of generality, assume v(A1) ≥ · · · ≥ v(An) and v(A1) = MMSn(v) > ∆⊕

n (α). Let Eα denote
the subset of objects whose disutilities are exactly α, i.e., Eα = {e ∈ M | v(e) = α}. It can be
verified that ∆⊕

n (α) ≥ (k+1)α (this is also illustrated in Fig. 1), which gives v(A1) > (k+1)α.
Moreover, since v(e) ≤ α for any e ∈M , |A1| ≥ k + 2. We have the following property.

Claim 1 Letting j be an agent in N\{1}, for any S1 ⊆ A1 and Sj ⊆ Aj such that v(S1) > v(Sj),
v(S1)− v(Sj) ≥ v(A1)− v(Aj).

Proof. For the sake of contradiction, we assume that there exist S′
1 ⊆ A1 and S′

j′ ⊆ Aj′ such
that v(S′

1) > v(S′
j′) and v(S′

1)− v(S′
j′) < v(A1)− v(Aj′). Then we construct another allocation

B = (B1, . . . , Bn) by exchanging S′
1 and S′

j′ , i.e., B1 = A1 \ S′
1 ∪ S′

j′ , Bj′ = Aj′ \ S′
j′ ∪ S′

1 and
Bj = Aj for any j ∈ N\{1, j′}. It follows that v(B1) < v(A1), v(Bj′) < v(A1) and v(Bj) = v(Aj)
for any j ∈ N \ {1, j′}, which contradicts the assumption that A is a lexicographical MinMax
of v.

The contraposition of Claim 1 gives the following.

Claim 2 Letting j be an agent in N \ {1}, for any S1 ⊆ A1 and Sj ⊆ Aj such that v(Aj \ Sj ∪
S1) < v(A1), v(Sj) ≥ v(S1).

As a warm-up, we start from the case with large α, where k = 0, and distinguish two subcases
depending on the domain of α.

Case 1: n ≥ 2 and k = 0

Subcase 1.1: α ∈ D(n, 0)

When α ∈ D(n, 0), 1
n+1 < α ≤ 2

n+2 and v(A1) > ∆⊕
n (α) = 2−2α

n . If Eα ∩ A1 ̸= ∅, there
exists e∗ ∈ A1 such that v(e∗) = α < v(A1). Then Claim 2 gives a lower bound of v(Aj) for any
j ∈ N \ {1}, i.e., v(Aj) ≥ v(e∗) = α. Summing up these lower bounds leads to the following
contradiction

1 =
∑
j∈N

v(Aj) >
2− 2α

n
+ (n− 1) · α =

(n+ 1)(n− 2)α+ 2

n
> 1,

where the last inequality is because α > 1
n+1 .

Therefore, Eα ∩A1 = ∅. Then by the definition of V(α), there must exist j′ ∈ N \ {1} such
that Eα ∩ Aj′ ̸= ∅, and thus v(Aj′) ≥ α. Recall that |A1| ≥ k + 2 = 2, this implies there exists
S ⊆ A1 such that v(A1) > v(S) ≥ 1

2v(A1) >
1−α
n . According to Claim 2, v(Aj) ≥ v(S) > 1−α

n
holds for any j ∈ N \ {1, j′}. As a result,

1 =
∑
j∈N

v(Aj) >
2− 2α

n
+ α+ (n− 2) · 1− α

n
= 1,

which is also a contradiction. Therefore, v(A1) > ∆⊕
n (α) never holds when α ∈ D(n, 0).
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For the other direction, the disutility function for this subcase (see Table 1) contains one
object with disutility α and n objects with disutility 1−α

n . Since 1
n+1 < α ≤ 2

n+2 , it follows that
1−α
n < α ≤ 2 · 1−α

n . Clearly, the MinMaxShare of this disutility function is 2 · 1−α
n = ∆⊕

n (α).

Object Disutility Quantity

α 1
1−α
n n

Table 1: Disutility function for Subcases 1.1 and 1.2.

Subcase 1.2: α ∈ I(n, 0)

When α ∈ I(n, 0), by similar reasonings, we can show that v(A1) > ∆⊕
n (α) does not hold,

either. In this subcase, 2
n+2 < α ≤ 1 and ∆⊕

n (α) = α. If Eα ∩ A1 ̸= ∅, there exists e∗ ∈ A1

such that v(e∗) = α < v(A1) and Claim 2 gives a lower bound of v(Aj) for any j ∈ N \ {1}, i.e.,
v(Aj) ≥ v(e∗) = α. Summing up these lower bounds leads to the following contradiction

1 =
∑
j∈N

v(Aj) > nα >
2n

n+ 2
≥ 1,

where the last inequality is because n ≥ 2.
Therefore, it must hold that Eα ∩ A1 = ∅ and moreover, there exists j′ ∈ N \ {1} with

Eα ∩Aj′ ̸= ∅. Thus, v(Aj′) ≥ α. Since |A1| ≥ k+ 2 = 2, there exists S ⊆ A1 such that v(A1) >
v(S) ≥ 1

2v(A1) >
α
2 . According to Claim 2, v(Aj) ≥ v(S) > α

2 holds for any j ∈ N \ {1, j′}. As
a result, we have

1 =
∑
j∈N

v(Aj) > α+ α+ (n− 2) · α
2
=

n+ 2

2
α > 1,

which is also a contradiction.
For the other direction, the disutility function for this subcase also contains one object with

disutility α and n objects with disutility 1−α
n (see Table 1). Since 2

n+2 < α ≤ 1, it follows that

2 · 1−α
n < α ≤ 1. Clearly, the MinMaxShare of this disutility function is α = ∆⊕

n (α). Up to here,
the proof regarding the case of k = 0 is completed.

Next, we consider the general case of k ≥ 1 excluding n = 2 and k = 1.

Case 2: n ≥ 3 and k ≥ 1 or n ≥ 2 and k ≥ 2

For this case, we again start with the subcases when α ∈ D(n, k). Recall that when α ∈
D(n, k), α ∈ ( 1

(k+1)n+1 ,
k+2

n(k+1)2+k+2
] and v(A1) > ∆⊕

n (α) =
k+2
k+1 ·

1−α
n .

Subcase 2.1: α ∈ D(n, k) and E(α) ∩Aj = ∅ for any j ∈ N \ {1}

In this subcase, all the objects with disutility α are in A1, and thus v(e) < α for any e ∈ Aj

and j ∈ N \ {1}. Due to the normalization, there exists an agent j0 who receives disutility at

most 1−v(A1)
n−1 , which gives the following lower bound of the difference between the disutilities

that agents 1 and j0 receive

v(A1)− v(Aj0) ≥
n

n− 1
v(A1)−

1

n− 1
>

1− (k + 2)α

(n− 1)(k + 1)
.

It can be shown that the rightmost-hand side of the above inequality is no less than α
2 , which

is equivalent to α ≤ 2
(k+1)n+k+3 . Since α ≤ k+2

n(k+1)2+k+2
, it suffices to show 2

(k+1)n+k+3 ≥
k+2

n(k+1)2+k+2
, which holds since

2

(k + 1)n+ k + 3
− k + 2

n(k + 1)2 + k + 2
=

(k + 1)(nk − k − 2)

((k + 1)n+ k + 3)(n(k + 1)2 + k + 2)
≥ 0,
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where the last inequality is because n ≥ 3 and k ≥ 1, or n ≥ 2 and k ≥ 2.
Therefore, v(A1) − v(Aj0) >

α
2 . Let e∗ be an object in A1 with disutility α. Since v(A1) >

(k + 1)α > α, for any S ⊆ Aj0 with disutility smaller than α, Claim 1 actually gives a tighter
bound of its disutility, i.e., v(S) ≤ v(e∗)−(v(A1)−v(Aj0)) <

α
2 . Thus, v(e) <

α
2 for any e ∈ Aj0 .

Besides, according to Claim 2, v(Aj0) ≥ v(e∗) = α. These two facts together imply that there
exists S′ ⊆ Aj0 such that v(S′) ∈ [α2 , α), which is a contradiction to Claim 1.

Subcase 2.2: α ∈ D(n, k) and E(α) ∩Aj′ ̸= ∅ for some j′ ∈ N \ {1}

In this subcase, some objects with disutility α are in Aj′ . Before diving into the proof for
this subcase, we present the following claim, which shows the existence of a subset of A1 whose
disutility is within a specific range.

Claim 3 There exists a subset S ⊆ A1 such that k
k+2v(A1) ≤ v(S) < v(A1)− α.

Proof of Claim 3. When k = 1, if there exists e ∈ A1 such that v(e) ≥ 1
3v(A1), recall

that v(A1) > (k + 1)α = 2α, Claim 3 holds since v(e) ≤ α < v(A1) − α. If v(e) < 1
3v(A1) for

any e ∈ A1, denote by (A1
1, A

2
1) one 2-partition of A1 that minimises the disutility difference

between the two bundles among all the 2-partitions. Without loss of generality, we assume
v(A1

1) ≤ v(A2
1), then v(A1

1) ≤ 1
2v(A1) < v(A1)− α. Besides, v(A1

1) ≥ 1
3v(A1) holds. Otherwise,

v(A2
1) − v(A1

1) = v(A1) − 2v(A1
1) > 1

3v(A1), implying that moving an object from A2
1 to A1

1

returns another 2-partition of A1 that has a smaller disutility difference, which contradicts the
definition of (A1

1, A
2
1).

When k ≥ 2, we first show that v(e) > 1
k+2α for any e ∈ A1. If not, v(A1) > v(A1 \ {e}) ≥

v(A1) − 1
k+2α. Then Claim 2 gives v(Aj) ≥ v(A1) − 1

k+2α for any j ∈ N \ {1}. Summing up
these lower bounds gives the following inequality

1 =
∑
j∈N

v(Aj) ≥ v(A1) + (n− 1)v(A1)−
n− 1

k + 2
α >

k + 2

k + 1
− (k + 2)2 + (k + 1)(n− 1)

(k + 1)(k + 2)
α.

It can be shown that the rightmost-hand side is at least 1, which constitutes a contradiction.
This is equivalent to show that α ≤ k+2

(k+2)2+(k+1)(n−1)
. Since α ≤ k+2

n(k+1)2+k+2
, it suffices to show

that k+2
(k+1)2+(k+1)(n−1)

≥ k+2
n(k+1)2+k+2

, which holds since

n(k + 1)2 + k + 2− ((k + 2)2 + (k + 1)(n− 1)) = (k + 1)(nk − k − 1) ≥ 0,

where the last inequality is because n ≥ 2 and k ≥ 1.
We then let S∗ = argminS⊆A1,v(S)>α v(S) which is guaranteed to exist since v(A1) > (k +

1)α > α, and show by contradiction that v(S∗) ≤ 2
k+2v(A1). This gives

k
k+2v(A1) ≤ v(A1\S∗) <

v(A1)−α. We assume for the sake of contradiction that v(S∗) > 2
k+2v(A1). Then the definition

of S∗ gives the following lower bound of v(e) for any e ∈ S∗

v(e) > v(S∗)− α >
2

k + 2
v(A1)− α >

k

k + 2
α ≥ 1

2
α,

where the second last inequality is because v(A1) > (k + 1)α and the last inequality is because
k ≥ 2. This lower bound implies that S∗ contains exactly 2 objects. Otherwise (i.e., |S∗| ≥ 3), for
any subset S′ ⊆ S∗ that contains exactly 2 objects, α < v(S′) < v(S∗) holds, which contradicts
the definition of S∗.

Therefore, we can denote S∗ = {el, es} and assume without loss of generality that v(el) ≥
v(es). Accordingly, v(el) ≥ 1

2v(S
∗) > 1

k+2v(A1) >
k+1
k+2α. Recall that v(e) >

1
k+2α holds for any

e ∈ A1. These two facts together imply that the total disutility of el and any other object in
A1 is larger than α. From the definition of S∗, we know that es ∈ argmine∈A1 v(e), which gives
v(e) ≥ v(es) > k

k+2α for any e ∈ A1. Let S′ be the subset of A1 that contains the two objects

9



with the smallest disutilities, the following inequality leads to a contradiction to the definition
of S∗

α ≤ 2k

k + 2
α < v(S′) ≤ 2

k + 2
v(A1) < v(S∗),

where the first inequality is because k ≥ 2 and the second last inequality is because |A1| ≥ k+2.

We are now ready to reveal the contradiction in the subcase. Denote by e∗ one object
in Aj′ that has disutility α and by S a subset of A1 that satisfies Claim 3, Claim 2 gives
v(Aj′ \ {e∗}) ≥ v(S) ≥ k

k+2v(A1); that is, v(Aj′) ≥ k
k+2v(A1) +α. For any j ∈ N \ {1, j′}, recall

that |A1| ≥ k + 2 which implies that there exists S′ ⊆ A1 such that v(A1) > v(S′) ≥ k+1
k+2v(A1),

Claim 2 gives v(Aj) ≥ v(S′) ≥ k+1
k+2v(A1). Summing up these lower bounds leads to the following

contradiction

1 =
∑
j∈N

v(Aj) ≥ v(A1) +
k

k + 2
v(A1) + α+ (n− 2) · k + 1

k + 2
v(A1)

=
n(k + 1)

k + 2
v(A1) + α > 1− α+ α = 1.

For the other direction, the disutility function for the subcases when α ∈ D(n, k) (see Table
2) containing one object with disutility α and n(k + 1) objects with disutility 1−α

n(k+1) . Since

α > 1
kn+n+1 , it follows that α > 1−α

n(k+1) . Besides, it can be verified that α < 2−2α
n(k+1) , which is

equivalent to α < 2
nk+n+2 . Since α ≤ k+2

n(k+1)2+k+2
, it suffices to show k+2

n(k+1)2+k+2
< 2

n(k+1)+2 ,

which holds since

2

n(k + 1) + 2
− k + 2

n(k + 1)2 + k + 2
=

nk(k + 1)

(n(k + 1) + 2)(n(k + 1)2 + k + 2)
> 0.

By the pigeonhole principle, there exists a bundle that contains at least k + 2 objects in any
allocation. This implies that the MinMaxShare of this disutility function is (k + 2) · 1−α

n(k+1) ,

which happens in the allocation where one bundle contains k + 2 objects with disutility 1−α
n(k+1) ,

one bundle contains k objects with disutility 1−α
n(k+1) and one object with disutility α, and each

of the other bundles contains k + 1 objects with disutility 1−α
n(k+1) .

Object Disutility Quantity

α 1
1−α

n(k+1) n(k + 1)

Table 2: Disutility function for subcases α ∈ D(n, k) with n ≥ 3 and k ≥ 1, or n ≥ 2 and k ≥ 2.

Next we consider the subcases when α ∈ I(n, k). Recall that when α ∈ I(n, k), α ∈
( k+2
n(k+1)2+k+2

, 1
kn+1 ] and v(A1) > ∆⊕

n (α) = (k + 1)α.

Subcase 2.3: α ∈ I(n, k) and E(α) ∩Aj = ∅ for any j ∈ N \ {1}

For this subcase, we first derive a lower bound of v(Aj) for any j ∈ N \ {1}, i.e., v(Aj) ≥
( (k+1)2

k+2 + 1
(n−1)(k+2))α. Let D = (k+1)2

k+2 + 1
(n−1)(k+2) , we assume for the sake of contradiction

that v(Aj′) < Dα for some j′ ∈ N \ {1}. It can be verified that k < D < k + 1, where the first
inequality is equivalent to n > 0, and the second inequality is equivalent to (n− 1)(k + 1) > 1.
Denote by e∗ one object in A1 with disutility α and by e′ any object in Aj , we have

v(Aj′ \ (Aj′ \ {e′}) ∪ (A1 \ {e∗})) = v(A1 \ {e∗} ∪ {e′}) < v(A1).
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Then from Claim 2, v(Aj′ \ {e′}) ≥ v(A1 \ {e∗}), which gives

v(e′) ≤ v(Aj′)− v(A1) + v(e∗) < Dα− (k + 1)α+ α = (D − k)α.

However, we next show that the disutility of some object in Aj′ must be larger than (D − k)α,
which leads to a contradiction. To achieve this, we denote S∗ ∈ argminS⊆Aj′ ,v(S)>(D−1)α v(S),

whose existence is guaranteed since Claim 2 gives v(Aj′) ≥ v(A1 \ {e∗}) > kα > (D − 1)α.
Notice that

v(Aj′ \ S∗ ∪ (A1 \ {e∗})) < Dα− (D − 1)α+ v(A1)− α = v(A1),

from Claim 2, v(S∗) ≥ v(A1 \ {e∗}) > kα. Then the definition of S∗ implies that the disutility
of any object in S∗ is at least

v(S∗)− (D − 1)α > (k −D + 1)α ≥ (D − k)α,

where the last inequality is equivalent to D − k − 1
2 = k+2−kn

2(n−1)(k+2) ≤ 0, which holds when n ≥ 3
and k ≥ 1, or n ≥ 2 and k ≥ 2.

Therefore, v(Aj) ≥ ( (k+1)2

k+2 + 1
(n−1)(k+2))α holds for any j ∈ N \ {1}. Summing up these

lower bounds leads to the following contradiction

1 =
∑
j∈N

v(Aj) > (k + 1)α+ (n− 1) · ((k + 1)2

k + 2
+

1

(n− 1)(k + 2)
)α =

n(k + 1)2 + k + 2

k + 2
α > 1.

Subcase 2.4: α ∈ I(n, k) and E(α) ∩Aj′ ̸= ∅ for some j′ ∈ N \ {1}
The proof is similar to that of Subcase 2.2. First, it can be verified that Claim 3 still holds.

Proof of Claim 3 for α ∈ I(n, k). Notice that Claim 3 holds as long as k = 1, thus, we
can focus on k ≥ 2. We first show that v(e) > 1

k+2α for any e ∈ A1. If not, v(A1 \ {e}) ≥
v(A1) − 1

k+2α. Then Claim 2 gives v(Aj) ≥ v(A1) − 1
k+2α for any j ∈ N \ {1}. Summing up

these lower bounds gives the following formula

1 =
∑
j∈N

v(Aj) ≥ v(A1) + (n− 1)v(A1)−
n− 1

k + 2
α >

n(k + 1)(k + 2)− n+ 1

k + 2
α.

It can be shown that the rightmost-hand side of the above inequality is at least 1, which is a
contradiction. This is equivalent to show that α ≥ k+2

n(k+1)(k+2)−n+1 . Since α ≥ k+2
n(k+1)2+k+2

, it

suffices to show that k+2
n(k+1)(k+2)−n+1 ≤

k+2
n(k+1)2+k+2

, which holds since

n(k + 1)(k + 2)− n+ 1− (n(k + 1)2 + k + 2) = nk − k − 1 ≥ 0

where the last inequality is because n ≥ 2 and k ≥ 1.
We then let S∗ = argminS⊆A1,v(S)>α v(S), which is guaranteed to exist since v(A1) > (k +

1)α > α. By the same proof as the counterpart in the proof of Claim 3 for α ∈ D(n, k), we can
show that v(S∗) ≤ 2

k+2v(A1), which gives k
k+2v(A1) ≤ v(A1 \ S∗) < v(A1)− α.

We are now ready to reveal the contradiction in this subcase. Denote by e∗ one object
in Aj′ that has disutility α and by S a subset of A1 that satisfies Claim 3, Claim 2 gives
v(Aj′ \ {e∗}) ≥ v(S) ≥ k

k+2v(A1); that is, v(Aj′) ≥ k
k+2v(A1) +α. For any j ∈ N \ {1, j′}, recall

that |A1| ≥ k + 2 which implies that there exists S′ ⊆ A1 such that v(A1) > v(S′) ≥ k+1
k+2v(A1),

Claim 2 gives v(Aj) ≥ v(S′) ≥ k+1
k+2v(A1). Summing up these lower bounds leads to the following

contradiction

1 =
∑
j∈N

v(Aj) ≥ v(A1) +
k

k + 2
v(A1) + α+ (n− 2) · k + 1

k + 2
v(A1)

=
n(k + 1)

k + 2
v(A1) + α >

n(k + 1)2 + k + 2

k + 2
α > 1.
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For the other direction, the disutility function for the subcases when α ∈ I(n, k) (See Table

3) containing kn + 1 objects with disutility α and n − 1 objects with disutility 1−(nk+1)α
n−1 . It

can be verified that α > 1−(kn+1)α
n−1 , which is equivalent to α > 1

(k+1)n . Since α > k+2
n(k+1)2+k+2

, it

suffices to show k+2
n(k+1)2+k+2

≥ 1
(k+1)n , which holds since

k + 2

n(k + 1)2 + k + 2
− 1

(k + 1)n
=

(k + 1)n− k − 2

(n(k + 1)2 + k + 2)(k + 1)n
≥ 0,

where the inequality is because n ≥ 3 and k ≥ 1, or n ≥ 2 and k ≥ 2. By the pigeonhole principle,
there exists a bundle that contains at least k+1 objects with disutility α. This implies that the
MinMaxShare of this disutility function is (k + 1)α, which happens in the allocation where one
bundle contains k+1 objects with disutility α, and each of the other bundles contains k objects
with disutility α and one object with disutility 1−(nk+1)α

n−1 .

Object Disutility Quantity

α kn+ 1
1−(nk+1)α

n−1 n− 1

Table 3: Disutility function for subcases α ∈ I(n, k) with n ≥ 3 and k ≥ 1, or n ≥ 2 and k ≥ 2.

Up to here, we computed Hill’s share for unrestricted m, except for n = 2 and k = 1. Moving
to the setting of restricted m, Hill’s share can be computed by similar approaches with a more
involved discussion. The remaining proof of Theorem 1 is regulated to the appendix.

4 Hill’s Guarantee for Indivisible Bads

4.1 Main Result

In this section, we prove the counterpart result of Hill’s guarantee for indivisible bads. Consider
the general case, where each one of the n agents now has an arbitrary disutility vi in Add(M)
(by convention m = |M |). Given m and n, a guarantee specifies an upper bound Γn(vi;m) on
agent i’s disutility when she shares the m bads with n− 1 other agents of unknown disutilities
in Add(M). By construction the mapping Γn is the same for every agent i. As part of its
definition, a guarantee must be feasible: for any profile (vi)

n
i=1 ∈ [Add(M)]n there exists an

allocation (A1, . . . , An) of M such that

vi(Ai) ≤ Γn(vi;m) for all 1 ≤ i ≤ n. (4)

We know from Aziz et al. (2017) and Feige et al. (2021) that the MinMaxShare value
MMSn(vi) is not a guarantee because at some (rare!) profiles no allocation meets all inequalities
in (4). By applying Inequalities (4) to an arbitrary guarantee Γn at the unanimous profile vi = v
for all i, we see it is lower bounded by the MinMaxShare:

Γn(v;m) ≥ MMSn(v) for all v ∈ Add(M).

In this section, we show that the monotone hull of ∆⊕
n serves as the best guarantee in Hill’s

model. Recall that U(α;m) contains all the disutility functions v(·) on objects M such that
maxe∈M v(e) ≤ α, and U(α) =

⋃
m U(α;m). For simplicity in the presentation and analysis,

we ignore the restriction of the number of objects m in this section, and the result can be
extended to the setting with parameter m using the same approach in Section 3. The definition
of U(α) is the same as in (Hill, 1987; Markakis and Psomas, 2011; Gourvès et al., 2015). Note
that U(α′) ⊆ U(α) if α′ ≤ α, and the difference between V(α) and U(α) is that the disutilities
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Figure 3: The characterisation for Heterogeneous Agents

in U(α) do not require that there must be one object with disutility α. It is straightforward
that the tight guarantee regarding U(·) must be monotone non-decreasing since any worst-case
disutility in U(β) is also a disutility in U(α) for β ≤ α. We write Vn the monotone hull of ∆⊕

n

Vn(α) = max
0≤β≤α

∆⊕
n (β),

as illustrated in Fig. 3 when n = 2, 3. In more detail, we have the following formula of Vn:

Vn(α) =

{
k+2

(k+1)n+1 , if α ∈ NI(n, k)

(k + 1)α, if α ∈ I(n, k)

where for any integer k ≥ 0,

NI(n, k) =

(
1

(k + 1)n+ 1
,

k + 2

(k + 1)((k + 1)n+ 1)

)
and

I(n, k) =

[
k + 2

(k + 1)((k + 1)n+ 1)
,

1

kn+ 1

]
.

By Theorem 1 and the construction of Vn(·), Vn(·) provides the tight bound of the worst-
case MinMaxShare regarding U(·). We further prove that Vn(·) is a guarantee and moreover an
allocation satisfying Vn(·) can be found in polynomial time.

Theorem 2 Γn(v) = Vn(maxe∈M v(e)) defines a canonical guarantee. That is, given any 0 ≤
αi ≤ 1 and vi ∈ U(αi) for i = 1, . . . , n, there exists an allocation (A1, . . . , An) with

vi(Ai) ≤ Vn(αi) for all i = 1, . . . , n

and such an allocation can be computed in polynomial time. Moreover, for any 0 ≤ α ≤ 1, there
exists {v′i}ni=1 with v′i ∈ U(α) for any i ∈ [n] such that Vn(α) is the best possible guarantee, i.e.,
for any allocation (B1, . . . , Bn),

there exists i ∈ N such that v′i(Bi) ≥ Vn(α).

As for ∆⊕
n (·) in Theorem 1 the two key features of this guarantee are: its computation is

elementary and it does not depend on the number of bads to allocate. As far as we know, no
other similarly simple guarantee for the allocation of bads has been identified.
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Remark 2 By Theorem 2, Vn(α) is the best guarantee for disutilities in U(α), and thus we
get the tight counterpart result of Hill (1987) for bads. However, it may not be the best in the
model of Gourvès et al. (2015), i.e., for disutilities in V(α). For example, when n = 2, we
can show that ∆⊕

2 (maxe∈M vi(e)) is a tighter guarantee in the later model. Given two disutility
functions v1 and v2, without loss of generality, suppose ∆

⊕
2 (maxe v1(e)) ≤ ∆⊕

2 (maxe v2(e)). Then
we find the MinMax partition of v1 so that the disutilities of both bundles are no greater than
∆⊕

2 (maxe v1(e)) to agent 1. We ask agent 2 to choose a better bundle whose disutility must be
no greater than 1

2 and thus no greater than ∆⊕
2 (maxe v2(e)) to agent 2. It is still open whether

∆⊕
n (maxe∈M vi(e)) is a guarantee or not when n ≥ 3 in Gourvès et al. (2015)’s model, which is

an interesting future research direction.

4.2 Proof of Theorem 2

To show that one can compute an allocation satisfying the required bound in Theorem 2, we
derive a variation of the moving-knife algorithm. When the objects are goods and divisible,
Dubins and Spanier (1961) proved that such an algorithm (also known as Dubins-Spanier moving
knife algorithm) gives the optimal worst-case bound, i.e., every agent gets value for at least 1

n .
Markakis and Psomas (2011) further proved that a variation of this algorithm also guarantees
the optimal worst-case bound for indivisible goods. In a nutshell, towards proving Theorem
2, we first use the reduction proved in (Bouveret and Lemâıtre, 2016; Huang and Lu, 2021)
to restrict our attention to the ordered instances when agents have the same ranking over all
objects, which significantly simplifies our analysis. Then we show that using Vn(·) to set the
parameters in the moving-knife algorithm always returns an allocation ensuring the bound in
Theorem 2.

The following lemma says that it suffices to only focus on the ordered instances.

Lemma 3 ((Bouveret and Lemâıtre, 2016; Huang and Lu, 2021)) Suppose there is an
algorithm that takes any ordered instance as input, runs in T (n,m) time and returns an allo-
cation where each agent i’s disutility is at most Vn(αi). Then, we have an algorithm that takes
any instance as input, runs in T (n,m) + O(nm logm) time and returns an allocation with the
same disutility guarantee.

Our approach is similar to that in Markakis and Psomas (2011), but the detailed proof
differs. Our algorithm runs in recursions. In each recursion, the algorithm allocates a bundle of
objects to one agent in a moving-knife fashion. Each time, each of the remaining agents moves
her “knife” one object towards the objects with smaller disutilities, until for every agent i the
total disutility of the objects before her ”knife” is larger than Vn(αi). After that, one of the last
agents (denoted by agent k) for whom the total utility of the objects before her knife is larger
than Vn(αk) receives the objects except the one right before her knife. If there remains only one
agent who has not received a bundle, she will get all the remaining objects. Otherwise, all the
remaining agents enter the next recursion with their disutility functions being normalized such
that for each of them the total disutility of the remaining objects is 1. The formal description
of our algorithm is presented in Algorithm 1.

Then we are going to prove Theorem 2. Without loss of generality, let 1, . . . , n be the order
in which agents receive bundles in Algorithm 1. Denote Ci = vi(A1) for every N \ {1}, the
following lemma gives a lower bound of Ci.

Lemma 4 For any agent i ∈ N \ {1} with αi ∈ NI(n, k) ∪ I(n, k) for some k ≥ 0, we have

Ci ≥
1− Vn(αi)

n− 1
.

Proof. Denote by q the index such that
∑q

e=1 vi(e) ≤ Vn(αi) and
∑q+1

e=1 vi(e) > Vn(αi), whose
existence is guaranteed since vi(M) > Vn(αi). Since Vn(αi) ≥ (k + 1)αi (this can be easily
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Algorithm 1 Algorithm for heterogeneous disutilities

Input: An ordered instance with agents N , objects M and disutility functions {vi}i∈N .
Output: An allocation A = {A1, . . . , An} with vi(Ai) ≤ Vn(αi) for every i ∈ N .
1: Initialize Si = ∅ for every i ∈ N .
2: while there exists an agent j with vj(Sj) ≤ Vn(αj) do
3: for every i ∈ N do
4: Si ← Si∪{the object in M \ Si with the largest disutility for agent i (tie breaks arbitrarily)}.
5: end for
6: end while
7: Pick the agent k ∈ N with vk(Sk \ {ẽ}) ≤ Vn(αk) where ẽ is the last object that k added

into Sk (tie breaks arbitrarily).
8: Ak ← Sk \ {ẽ}.
9: if |N | = 2 then

10: Allocate M \Ak to the remaining agent.
11: else
12: Construct a new disutility function v′i for every i ∈ N \ {k} by setting v′i(e) =

vi(e)
1−vi(Ak)

for

every e ∈M \Ak.
13: Run Algorithm 1(N \ {k}, M \Ak, {v′i}i∈N\{k}).
14: end if

verified from the definition of Vn(α) and can also be seen from Fig. 3) and vi(e) ≤ αi for every
e ∈M , q ≥ k+1. Otherwise,

∑q+1
e=1 vi(e) ≤ (k+1)αi ≤ Vn(αi), which contradicts the definition

of q. According to Algorithm 1, Ci ≥
∑q

e=1 vi(e). Since only ordered instances are considered,
vi({q + 1}) ≤ vi({q}) ≤ Ci

k+1 , which gives

Ci +
Ci

k + 1
≥

q+1∑
e=1

vi(e) > Vn(αi).

Therefore, Ci >
k+1
k+2 · Vn(αi). We consider the following two cases regarding the ranges of αi.

Case 1: αi ∈ I(n, k). In this case, k+2
(k+1)((k+1)n+1) ≤ αi ≤ 1

kn+1 and Vn(αi) = (k + 1)αi.
Then,

Ci >
k + 1

k + 2
· Vn(α) ≥

1− Vn(α)

n− 1
,

where the last inequality holds since αi ≥ k+2
(k+1)((k+1)n+1) .

Case 2: αi ∈ NI(n, k). In this case, Vn(αi) =
k+2

(k+1)n+1 , which gives

Ci >
k + 1

k + 2
· Vn(α) =

1− Vn(α)

n− 1
,

which completes the proof.
Interestingly, the following lemma shows the connection between the ranges of αi and
αi

1− 1−Vn(αi)

n−1

.

Lemma 5 For any αi ∈ NI(n, k) ∪ I(n, k) for some k ≥ 0, we have

αi

1− 1−Vn(αi)
n−1

∈
{

I(n− 1, k), if αi ∈ I(n, k)
NI(n− 1, k), if αi ∈ NI(n, k)

Proof. We consider the following two cases regarding the ranges of αi.
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Case 1: αi ∈ I(n, k). In this case, k+2
(k+1)((k+1)n+1) ≤ αi ≤ 1

kn+1 and Vn(αi) = (k + 1)αi.
Then, we have

αi

1− 1−Vn(αi)
n−1

=
(n− 1)αi

n− 2 + (k + 1)αi
≤ n− 1

(n− 2)(kn+ 1) + k + 1
=

1

k(n− 1) + 1
,

where the inequality is because αi ≤ 1
kn+1 . Besides,

αi

1− 1−Vn(αi)
n−1

=
(n− 1)αi

n− 2 + (k + 1)αi
≥ (k + 2)(n− 1)

(k + 1)((n− 2)(kn+ n+ 1) + k + 2)

=
k + 2

(k + 1)((k + 1)(n− 1) + 1)
,

where the inequality is because αi ≥ k+2
(k+1)((k+1)n+1) .

Case 2: αi ∈ NI(n, k). In this case, 1
(k+1)n+1 < αi <

k+2
(k+1)((k+1)n+1) and Vn(αi) =

k+2
(k+1)n+1 .

Then, we have

αi

1− 1−Vn(αi)
n−1

=
((k + 1)n+ 1)αi

(k + 1)(n− 1) + 1
<

k + 2

(k + 1)((k + 1)(n− 1) + 1)
,

where the inequality is because αi <
k+2

(k+1)((k+1)n+1) . Besides,

αi

1− 1−Vn(αi)
n−1

=
((k + 1)n+ 1)αi

(k + 1)(n− 1) + 1
>

1

(k + 1)(n− 1) + 1
,

where the inequality is because αi >
1

(k+1)n+1 .

Proof of Theorem 2. We prove Theorem 2 by mathematical induction. When n = 2, it is
easy to see the correctness of Theorem 2 from Lemma 4 since v1(A1) ≤ V2(α1) and v2(A2) =
1− v2(A1) ≤ 1− (1− V2(α2)) = V2(α2), We assume as our induction hypothesis that Theorem
2 holds for n− 1. Then we aim to prove the correctness for n.

From Algorithm 1, v1(A1) ≤ Vn(α1) clearly holds for agent 1. For any other agent i ∈ N\{1},
denote α̃i = maxe∈M\A1

v′i(e). We know from Algorithm 1 that α̃i ≤ αi
1−Ci

and from the induction
hypothesis that v′i(Ai) ≤ Vn−1(α̃i), which together give

vi(Ai) = (1− Ci)v
′
i(Ai) ≤ (1− Ci)Vn−1(α̃i) ≤ (1− Ci)Vn−1(

αi

1− Ci
),

where the last inequality holds by recalling that Vn−1(α̃i) is an non-decreasing function of α̃i.
Therefore, it remains to show

(1− Ci)Vn−1(
αi

1− Ci
) ≤ Vn(αi).

Note that (1 − Ci)Vn−1(
αi

1−Ci
) is an non-increasing function of Ci. This is because when

αi
1−Ci

∈ I(n − 1, k) for some k, (1 − Ci)Vn−1(
αi

1−Ci
) = (1 − Ci)(k + 1) αi

1−Ci
= (k + 1)αi, which

is a constant with respect to Ci; when
αi

1−Ci
∈ NI(n − 1, k) for some k, (1 − Ci)Vn−1(

αi
1−Ci

) =

(1 − Ci)
k+2

(k+1)(n−1)+1 , a decreasing function of Ci. Then, the following formula completes the
proof of Theorem 2

(1− Ci)Vn−1(
αi

1− Ci
) ≤ (1− 1− Vn(αi)

n− 1
)Vn−1(

αi

1− 1−Vn(αi)
n−1

),

where the first inequality is due to Ci ≥ 1−Vn(αi)
n−1 (according to Lemma 4), and the second

inequality can be verified by considering the following two cases regarding the ranges of αi,

16



Case 1: αi ∈ I(n, k). In this case, Lemma 5 gives αi

1− 1−Vn(αi)

n−1

∈ I(n− 1, k). Thus, we have

(1− 1− Vn(αi)

n− 1
)Vn−1(

αi

1− 1−Vn(αi)
n−1

) = (1− 1− Vn(αi)

n− 1
) · (k + 1)

αi

1− 1−Vn(αi)
n−1

= (k + 1)αi = Vn(αi).

Case 2: αi ∈ NI(n, k). In this case, αi

1− 1−Vn(αi)

n−1

∈ NI(n− 1, k). Thus, we have

(1− 1− Vn(αi)

n− 1
)Vn−1(

αi

1− 1−Vn(αi)
n−1

) = (1−
1− k+2

(k+1)n+1

n− 1
) · k + 2

(k + 1)(n− 1) + 1

=
k + 2

(k + 1)n+ 1
= Vn(αi).

Therefore, we complete the proof of Theorem 2.
The instances provided in Section 3 and Appendix B show the tightness of Theorem 2.

5 Numerical Experiments

To demonstrate that ∆⊕
n (α;m) can serve as a good alternative of MinMaxShare, we first eval-

uate the worst-case ratio of ∆⊕
n (α;m) and ∆⊖

n (α;m) (recall that ∆⊖
n (α;m) is the best-case

MinMaxShare over all disutilities in V(α;m)). Denote by rn(α;m) = ∆⊕
n (α;m)

∆⊖
n (α;m)

. It is clear that

rn(α;m) is no smaller than the ratio between ∆⊕
n (α;m) and the real MinMaxShare, and we

have illustrated rn(α;∞) in Fig. 2 for n = 2, 10, 100. As we can see, although the worst-case
ratio can be close to 2, it only happens for sufficiently large n and a small range of values of
α. For any n and most values of α, the ratio is better than 4

3 and 11
9 , which are two fractions

of the MinMaxShare that are known to be achievable. Actually, it is not hard to verify that
rn(α;m) ≤ 2n

n+1 < 2 for all α, and rn(α;m) ≤ 4
3 for all α outside of ( 4

9n ,
3

2n+3); we provide simple

proofs in the appendix. Note that 3
2n+3 −

4
9n < 7

6n .

Claim 4 For any n ≥ 2, α ∈ (0, 1] and m ≥ ⌈ 1α⌉, rn(α;m) ≤ 2n
n+1 .

Claim 5 rn(α;m) > 4
3 only when α ∈ (29 ,

1
3) if n = 3, or α ∈ (16 ,

3
11) if n = 4, or α ∈

( 4
45 ,

1
9) ∪ ( 2

15 ,
3
13) if n = 5, or α ∈ ( 4

9n ,
3

2n+3) if n ≥ 6.

From the formula of rn(α;m), as well as Fig. 2, we have the following observations:

Observation 1 As n increases, the worst-case ratio of rn(α;m), i.e., maxα rn(α;m), increases.

Observation 2 As n increases, large values of rn(α;m) happen increasingly more rarely if α is
randomly generated from [0, 1].

Next, we conduct numerical experiments with synthetic and real-world data to illustrate the
real distances between ∆⊕

n (α;m) and the MinMaxShare of specific disutility functions, which
also validate the above two observations.

5.1 Experiments with Synthetic Data

In this section, we randomly generate a number of disutility functions, and for each of them, we
compute the ratio between the corresponding Hill’s share and the MinMaxShare. In particular,
for each given n and m, we randomly generate 100 instances; for each instance, we randomly
generate m − 1 numbers in [0, 1]. These m − 1 numbers separate the interval [0, 1] into m
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(a) n = 2, m = 8, 9, 10 (b) n = 3, m = 8, 9, 10

(c) n = 4, m = 8, 9, 10 (d) n = 5, m = 8, 9, 10

(e) n = 6, m = 8, 9, 10 (f) n = 7, m = 8, 9, 10

Figure 4: Ratios in random data.

contiguous segments, and the lengths of these segments are used as the disutilities of the m
objects. Then we compute the ∆⊕

n (α;m) value using the maximum of these values and the
MinMaxShare. For each instance, we record the ratio of these two quantities.

The results are summarized in Fig. 4. We slice the ratios into small intervals, each of which
has a length of 0.1, and count the number of instances falling into each interval for each setting.
The figure validates the previous two observations: when n = 2 and 3, the largest ratio can only
reach interval [1.3, 1.4) and [1.4, 1.5), but when n ≥ 4, it reaches [1.5, 1.6); however, looking at
the number of instances, for larger n, fewer and fewer instances fall into these large intervals,
and instead, the number of instances in [1.0, 1.1) significantly dominates the other intervals.
Specifically, when n = 6 and 7, [1.0, 1.1) contains over 80% of all random instances, and none
of them reaches a ratio beyond 1.6, while the worst-case ratio can be greater than 1.7.

In the appendix, we conduct more experiments by fixing n = 2 and increasing the value of
m and report the change in the distribution of the ratios.

5.2 Experiments with Real-World Data

The real-world data set is collected from the Spliddit platform (spliddit.org) – a well-known
platform that provides implementations of fair allocation algorithms for various practical prob-
lems (Goldman and Procaccia, 2014). The data set contains 8,409 instances created between
October 2014 and May 2020, involving 22,530 agents and 42,469 objects. We randomly select
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10,000 disutility functions from the data, where the largest value of n is 14. After normalising
all the disutility functions, for each of them, we record the ratio of the corresponding Hill’s share
and the MinMaxShare. The results are shown in Fig. 5. As we can see, very few instances have
ratios higher than 1.4, and over 65% of the instances have ratios within [1.0, 1.1). Actually,
there are only 173 (= 1.73%) and 26 (= 0.26%) instances falling into [1.6, 1.7) and [1.7, 1.8)
respectively, and none is beyond 1.8. Note that in the 10,000 disutility functions, there are only
14 instances with n ≥ 9, which further amplifies the rare happening of large ratios.

Figure 5: Ratios in Spliddit data.

6 Conclusion

In this work, we give the tight characterisation of Hill’s share for allocating indivisible bads,
i.e., the exact upper bound of the MinMaxShare of disutility functions with the same largest
single-object value. Hill’s share exhibits several advantages including elementary computation,
being close to the MinMaxShare, and displaying the effect of an agent’s disutility in her share
of all objects. More importantly, the monotonic cover of Hill’s share serves as a canonical
guarantee; as far as we know, no other similarly simple guarantee for the allocation of bads
has been identified. There are some open problems. Hill’s guarantee is tight for the domain of
disutility functions whose largest single-object disutility is no greater than a given parameter,
but we do not know whether it is tight when the domain only contains the disutility functions
whose largest single-object disutility equals this parameter. The same problem is also open for
the mirror problem of allocating goods, for which the tight characterisation of Hill’s share is
also unknown (when n ≥ 3). Our work also uncovers some other related research problems,
such as the algorithmic problem of finding a Pareto optimal allocation satisfying Hill’s share
and the game-theoretic problem of designing truthful mechanisms to incentivize the agents to
report their disutility functions honestly while achieving (approximations of) Hill’s share.
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Appendix

A Missing Proofs in Section 2

A.1 Proof of Lemma 1

For each case, we show that MMSn(v) ≥ ∆⊖
n (α;m) for any v ∈ V(α;m), and design a disutility

function such that the MinMaxShare is exactly ∆⊖
n (α;m). By the definition of V(α;m), there

exists an object with disutility α, thus MMSn(v) ≥ α for any v ∈ V(α;m). Moreover, when
α > 1/n, there exists a disutility function such that the MinMaxShare is exactly α. Specifically,
v1 contains ⌈ 1α⌉ objects, ⌊

1
α⌋ with disutility α and one with disutility (1 − ⌊ 1α⌋ · α) < α (if 1 is

indivisible by α). MMSn(v1) = α follows from the fact that v1 contains at most n objects.
By the definition of MinMaxShare, MMSn(v) ≥ 1

n , where the equality is achieved when the
total disutility of M can be evenly distributed among the n-partition. When 1/n is divisible by
α (i.e., α = 1

kn for some positive integer k), or 1/n is not divisible by α (i.e., 1
(k+1)n < α < 1

kn)
and the number of objects m is at least kn + n, there exists an disutility function such that
the MinMaxShare is exactly 1/n. For the former, the disutility function v2 contains 1/α = kn
objects with disutility α. Clearly, each bundle in the best n-partition contains k objects with
disutility α and MMSn(v2) = 1/n. For the latter, intuitively, the total disutility of M can also
be evenly distributed by letting each bundle contain ⌊ 1

nα⌋ = k objects with disutility α and one
object with disutility 1

n −kα < α. In total, kn+n ≤ m objects are needed. Hence, the disutility
function v3 contains kn objects with disutility α, n objects with disutility 1

n−kα and m−kn−n
objects with disutility 0, and MMSn(v3) = 1/n.

However, when 1/n is indivisible by α but the number of objectsm is limited to kn+n−1, 1/n
cannot be achieved since some bundles in any n-partition contain no more than k objects, and
the disutilities of these bundles are at most kα < 1/n. For this case, we show that MMSn(v) ≥
kα+ 1−knα

m−kn for any v ∈ V(α;m). Let x be the number of bundles in the n-partition that contain
no more than k objects, it follows that x ≥ kn + n −m. Since the disutility of each of these
bundles is at most kα, the average disutility of the other bundles is at least

1− kαx

n− x
≥ 1− (kn+ n−m) · kα

m− kn
= kα+

1− knα

m− kn
> kα

where the leftmost-hand side is an increasing function of x since kα < 1/n, and the last inequality
is because m ≥ ⌈ 1α⌉ > kn. Therefore, the largest disutility of any n-partition is at least

kα + 1−knα
m−kn ; that is, MMSn(v) ≥ kα + 1−knα

m−kn for any v ∈ V(α;m). Let v4 contain kn objects

with disutility α and m−kn objects with disutility 1−knα
m−kn < α. Clearly, the worst bundle of the

best n-partition contains k objects with disutility α and one object with disutility 1−knα
m−kn , thus

MMSn(v4) = kα+ 1−knα
m−kn .

A.2 Proof of Lemma 2

That ∆⊕
n (α;m) decreases in n is clear by comparing the MinMaxShares of an arbitrary n-

partition and the (n+1)-partition obtained by adding one empty share. The monotonicity in m
(i.e., ∆⊕

n (α;m) ≤ ∆⊕
n (α;m+ 1)) follows that every disutility in V(α;m) can be transformed to

one in V(α;m+ 1) by adding an object with disutility 0, without changing the MinMaxShare.
We then show when m ≥ ⌈ 2α⌉ − 1, ∆⊕

n (α;m) ≥ ∆⊕
n (α;m + 1), thus ∆⊕

n (α;m) remains
constant. To achieve this, we first claim that when m ≥ ⌈ 2α⌉ − 1, for any v ∈ V(α;m + 1) and
any allocation (A1, . . . , An), there exists one bundle such that the total disutility of two of its
objects is no more than α. Otherwise, for any bundle Ak, the total disutility of any two objects
is larger than α, which means that v(Ak) >

|Ak|
2 α. Upon summing up the lower bounds over all

bundles, 1 =
∑

k∈N v(Ak) >
α
2 · ⌈

2
α⌉ ≥ 1, a contradiction.
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Now we pick any disutility v ∈ V(α;m+1), and let (A1, . . . , An) be the allocation that gives
the MinMaxShare of v. By the claim, there exists a bundle (w.l.o.g., A1) such that two objects
e1, e2 ∈ A1 satisfy v(e1)+v(e2) ≤ α. We derive a disutility v′ ∈ V(α;m) by merging e1 and e2 into
one object e, and show that MMSn(v) = MMSn(v

′). On one hand, let A′
1 = A1 \ {e1, e2} ∪ {e},

since (A′
1, . . . , An) is an allocation regarding v′ with the largest disutility being MMSn(v), it

follows that MMSn(v) ≥ MMSn(v
′). On the other hand, by decomposing e into e1 and e2, we

can convert any allocation regarding v′ to an allocation regarding v without changing the largest
disutility, thus MMSn(v) ≤ MMSn(v

′).
Therefore, when m ≥ ⌈ 2α⌉ − 1, every disutility in V(α;m + 1) can be transformed to one

in V(α;m) without changing the MinMaxShare, which gives ∆⊕
n (α;m) ≥ ∆⊕

n (α;m + 1). By
combining the monotonicity in m, ∆⊕

n (α;m) remains constant when m ≥ ⌈ 2α⌉ − 1.

B Missing Proofs in Section 3

B.1 Case 3: n = 2 and k = 1 for unrestricted m

We now prove Corollary 1 for the case of n = 2 and k = 1, i.e., α ∈ D(2, 1) ∪ I(2, 1).

Subcase 3.1: α ∈ (15 ,
7
27 ]

When α ∈ (15 ,
7
27 ], v(A1) > ∆⊕

2 (α) =
3−3α

4 . If Eα ∩ A2 ̸= ∅, A2 contains some objects with
disutility α. Notice that Claim 3 holds as long as k = 1, thus there exists S ⊆ A1 such that
1
3v(A1) ≤ v(S) < v(A1) − α. Denote by e∗ one object in A2 with disutility α, Claim 2 gives
v(A2 \ {e∗}) ≥ v(S) ≥ 1

3v(A1). As a result, we have

1 = v(A1) + v(A2) ≥ v(A1) +
1

3
v(A1) + α,

which gives v(A1) ≤ 3−3α
4 , thus contradicting the assumption that v(A1) > ∆⊕

n (α).
Therefore, Eα ∩ A2 = ∅, which means that all the objects with disutility α are in A1 and

for any e ∈ A2, v(e) < α. We first derive an upper bound and a lower bound of the maximum
disutility of the objects in A2. Denote by e∗ one object in A1 with v(e∗) = α < v(A1), since
v(A1)− v(A2) = 2v(A1)− 1 > 1−3α

2 , Claim 1 gives

max
e∈A2

v(e) ≤ v(e∗)− (v(A1)− v(A2)) <
5α− 1

2
.

Notice that 1−3α
2 > α

3 since α ≤ 7
27 < 3

11 , v(A1) − v(A2) > α
3 . Then for every S ⊆ A2

with v(S) < α, Claim 1 actually gives a tighter bound of v(S), i.e., v(S) ≤ v(e∗) − (v(A1) −
v(A2)) < 2

3α. This also implies that for every S′ ⊆ A2 with v(S′) ≥ 2
3α, v(S

′) ≥ α actually
holds. Let S∗ = argminS⊆A2,v(S)≥ 2

3
α v(S) whose existence is guaranteed since Claim 2 gives

v(A2) ≥ v(e∗) = α, thus, v(S∗) ≥ α. Then from the definition of S∗, v(e) ≥ v(S∗) − 2
3α ≥

1
3α

holds for any e ∈ A2, which implies

max
e∈A2

v(e) ≥ α

2
.

Otherwise (i.e., maxe∈A2 v(e) <
α
2 ), the total disutility of any two objects in A2 is at least 2

3α
and smaller than α, which is a contradiction to Claim 1.

We then show that |A1| is exactly 3. Otherwise (i.e., |A1| ≥ 4), there exists S ⊆ A1 such
that v(A1) > v(S) ≥ α+ 2

3(v(A1)− α). Then Claim 2 gives v(A2) ≥ v(S) ≥ α+ 2
3(v(A1)− α).

Summing up the lower bounds of v(A1) and v(A2) leads to a contradiction as below

1 = v(A1) + v(A2) ≥
5

3
v(A1) +

1

3
α >

15− 11α

12
> 1,

where the last inequality is because α ≤ 7
27 < 3

11 . Therefore, we can denote A1 = {e11, e12, e13}
and assume without loss of generality that v(e11) = α ≥ v(e12) = x ≥ v(e13) = y. We then derive
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the lower bounds of x and y, and reveal the contradiction in this subcase. Since x ≥ y, the
following formula holds

x ≥ x+ y

2
=

v(A1)− α

2
>

3− 7α

8
≥ 5α− 1

2
> max

e∈A2

v(e),

where the second last inequality is because α ≤ 7
27 . Then Claim 1 gives the following lower

bound of x

x ≥ max
e∈A2

v(e) + (v(A1)− v(A2)) >
α

2
+

1− 3α

2
=

1− 2α

2
.

Claim 1 also gives y ≥ v(A1)− v(A2). Notice that

2 · (v(A1)− v(A2)) >
2− 6α

2
> α− 1− 3α

2
> x− (v(A1)− v(A2)),

where the second inequality is because α ≤ 7
27 < 3

11 , we have the following lower bound of y

y >
1

2
· (x− (v(A1)− v(A2))) ≥

1

2
·max
e∈A2

v(e) ≥ α

4
.

Therefore, v(A1) = α+x+y > α+ 1−2α
2 + α

4 = 2+α
4 , which gives v(A1)−v(A2) = 2v(A1)−1 > α

2 .
However, according to Claim 1, v(A1) − v(A2) ≤ α − maxe∈A2 v(e) ≤ α

2 , thus constituting a
contradiction.

For the other direction, the disutility function for this subcase contains one object with
disutility α and four objects with disutility 1−α

4 . Since 1
5 < α ≤ 7

27 , it follows that 1−α
4 < α <

2 · 1−α
4 , where the last inequality is because α ≤ 7

27 < 1
3 . Clearly, the MinMaxShare of this

disutility function is 3 · 1−α
4 .

Subcase 3.2: α ∈ ( 7
27 ,

2
7 ]

When α ∈ ( 7
27 ,

2
7 ], v(A1) > ∆⊕

2 (α) = 2+3α
5 . If Eα ∩ A2 ̸= ∅, the proof is similar to that

for the counterpart of Subcase 3.1. That is, we also have v(A1) ≤ 3−3α
4 , which contradicts

v(A1) > ∆⊕
n (α) since

3−3α
4 < 2+3α

5 when α > 7
27 .

Therefore, we can focus on Eα∩A2 = ∅. We first derive an upper bound and a lower bound of
the maximum disutility of the objects in A2, which is similar to the counterpart of Subcase 3.1.
Denote by e∗ one object in A1 with v(e∗) = α < v(A1), since v(A1)−v(A2) = 2v(A1)−1 > 6α−1

5 ,
Claim 1 gives

max
e∈A2

v(e) ≤ v(e∗)− (v(A1)− v(A2)) <
1− α

5
.

Notice that 6α−1
5 > α

3 since α > 7
27 > 3

13 , v(A1) − v(A2) > α
3 . Then for every S ⊆ A2 with

v(S) < α, Claim 1 actually gives a tighter bound of v(S), i.e., v(S) ≤ v(e∗)−v(A1)−v(A2) <
2
3α.

This also implies that for every S′ ⊆ A2 with v(S′) ≥ 2
3α, v(S

′) ≥ α actually holds. Let S∗ =
argminS⊆A2,v(S)≥ 2

3
α v(S) whose existence is guaranteed since Claim 2 gives v(A2) ≥ v(e∗) = α,

thus, v(S∗) ≥ α. Then from the definition of S∗, v(e) ≥ v(S∗)− 2
3α ≥

1
3α holds for any e ∈ A2,

which implies

max
e∈A2

v(e) ≥ α

2
.

Otherwise (i.e., maxe∈A2 v(e) <
α
2 ), the total disutility of any two objects in A2 is at least 2

3α
and smaller than α, which is a contradiction to Claim 1.

Observe that A1 contains exactly one object with disutility α. Otherwise (i.e., A1 contains
at least two objects with disutility α), Claim 2 gives v(A2) ≥ 2α which leads to the following
contradiction

1 = v(A1) + v(A2) >
2 + 3α

5
+ 2α > 1,
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where the last inequality is because α > 7
27 > 3

13 . Recall that |A1| ≥ 3, A1 contains at least two
objects with disutility smaller than α. For each of such objects, we call it a medium object if its
disutility is larger than maxe∈A2 v(e). Otherwise, we call it a small object. Then Claim 1 gives
the following lower bound of the disutility of any medium object e

v(e) ≥ max
e∈A2

v(e)− (v(A1)− v(A2))

= max
e∈A2

v(e)− (2v(A1)− 1) >
α

2
− 6α− 1

5
=

17α− 2

10
,

as well as the following lower bound of the disutility of any small object e′

v(e′) ≥ v(A1)− v(A2) = 2v(A1)− 1 >
6α− 1

5
.

We then reveal the contradiction by considering possible combinations of objects in A1 and
showing that no possible combination exists.

Combination 1 : besides the object with disutility α, A1 also contains at least 3 small objects.
Thus, v(A1) > α + 3 · 6α−1

5 = 23α−3
5 . Then a lower bound of the difference between v(A1) and

v(A2) is

v(A1)− v(A2) = 2v(A1)− 1 >
46α− 11

5
>

α

2
,

where the last inequality is because α > 7
27 > 22

87 . However, according to Claim 1, v(A1)−v(A2) ≤
α − maxe∈A2 v(e) ≤ α

2 , which is a contradiction. Note that this also implies that except the
object with disutility α, the total disutility of the other objects can not exceed that of three
small objects. Since the total disutility of one medium object and one small object is larger than

17α− 2

10
+

6α− 1

5
=

29α− 4

10
>

18α− 3

5
= 3 · 6α− 1

5
,

where the inequality is because α < 2
7 , the only combination that remains to consider is that

A1 contains 2 small objects besides the object with disutility α.

Combination 2 : besides the object with disutility α, A1 contains 2 small objects. From the
definition of small object, v(e′) ≤ maxe∈A2 v(e) <

1−α
5 holds for any small object e′ ∈ A1. Thus,

v(A1) < α+ 2 · 1−α
5 = 2+3α

5 , which is a contradiction to the assumption that v(A1) > ∆⊕
2 (α).

For the other direction, the disutility function for this subcase contains one object with
disutility α and five objects with disutility 1−α

5 . Since 1
6 < 7

27 < α ≤ 2
7 , it follows that

1−α
5 < α ≤ 2 · 1−α

5 . Clearly, the MinMaxShare of this disutility function is α+ 2 · 1−α
5 .

Subcase 3.3: α ∈ (27 ,
1
3 ]

When α ∈ (27 ,
1
3 ], v(A1) > ∆⊕

2 (α) = 2α. If Eα ∩A2 ̸= ∅, the proof is similar to those for the
counterparts of Subcases 3.1 and 3.2. That is, we also have v(A1) ≤ 3−3α

4 , which contradicts
v(A1) > ∆⊕

2 (α) since
3−3α

4 < 2α when α > 2
7 > 3

11 .
Then we focus on Eα ∩ A2 = ∅. Since |A1| ≥ 3, there exists S ⊆ A1 such that α +

1
2(v(A1) − α) ≤ v(S) < v(A1). From Claim 2, we have a lower bound of v(A2), i.e., v(A2) ≥
α+ 1

2(v(A1)− α). Summing up the lower bounds of v(A1) and v(A2) leads to a contradiction,

1 = v(A1) + v(A2) ≥
3

2
v(A1) +

α

2
>

7α

2
> 1,

where the last inequality is because α > 2
7 .

For the other direction, the disutility function for this subcase contains three objects with
disutility α and one object with disutility 1 − 3α (if α < 1

3). Since α > 2
7 > 1

4 , it follows that
1− 3α < α. Clearly, the MinMaxShare is 2α.
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B.2 Proof of Theorem 1

We now carefully discuss Hill’s share when m is not sufficiently large, which completes the
proof of Theorem 1. For the sake of contradiction, we assume that there exists a disutility
v ∈ V(α;m) such that MMSn(v) > ∆⊕

n (α;m), and let A = (A1, . . . , An) be an allocation that
gives the MinMaxShare of v. Without loss of generality, assume v(A1) ≥ · · · ≥ v(An). We now
split the proof into several cases based on the values of n and k, and it suffices to compute the
share for the case where m is smaller than the number of objects in the worst-case disutility
function in the unrestricted setting.

Case 1: n ̸= 2 or k ̸= 1

We consider the subcases α ∈ D(n, k) and α ∈ I(n, k), separately.

Subcase 1.1: α ∈ D(n, k)

Recall that when α ∈ D(n, k) with n ̸= 2 or k ̸= 1, the disutility function constructed in the
setting when m is not restricted contains kn+ n+ 1 objects (see Tables 1 and 2). Therefore, if
m ≥ kn+ n+ 1, the tight bound remains unchanged.

Thus we can focus on m ≤ kn + n. Since v(A1) > ∆⊕
n (α;m) = (k + 1)α, by Claim 2,

v(Aj) ≥ v(A1)− α > kα for any j ∈ N \ {1}. Moreover, since the disutility of any object is at
most α, A1 contains at least k+2 objects and Aj contains at least k+1 ones, i.e., |A1| ≥ k+2
and |Aj | ≥ k + 1. Accordingly, the total number of objects is at least k + 2 + (n− 1)(k + 1) =
kn + n + 1 > m, a contradiction. The disutility function that shows tightness (see Table 4)
contains ⌈ 1α⌉−1 objects with disutility α, one object with disutility 1− (⌈ 1α⌉−1)α, and m−⌈ 1α⌉
objects with disutility 0. This disutility function is valid since m ≥ ⌈ 1α⌉. Since α ∈ D(n, k),
1
α ≥

n(k+1)2+k+2
k+2 ≥ kn+ 1, where the last inequality is because n ≥ 0. Therefore, the disutility

function contains at least kn + 1 objects with disutility α By the pigeonhole principle, the
MinMaxShare is at least (k + 1)α.

Object Disutility Quantity

α ⌈ 1α⌉ − 1
1− (⌈ 1α⌉ − 1)α 1

0 m− ⌈ 1α⌉

Table 4: Disutility function for subcase α ∈ D(n, k) with n ̸= 2 or k ̸= 1, and m ≤ kn+ n.

Subcase 1.2: α ∈ I(n, k)

The bound for α ∈ I(n, k) remains unchanged regardless of the value of m, since there always
exists a disutility function whose MinMaxShare is at least ∆⊕

n (α;m) = (k+1)α. Specifically, the
disutility function (see Table 4) also contains ⌈ 1α⌉ − 1 objects with disutility α, one object with
disutility 1− (⌈ 1α⌉ − 1)α, and m− ⌈ 1α⌉ objects with disutility 0. Since α ∈ I(n, k), 1

α ≥ kn+ 1,
which means that there are at least kn+1 objects with disutility α. By the pigeonhole principle,
the MinMaxShare is (k + 1)α.

Case 2: n = 2 and k = 1

Recall that when n = 2 and k = 1, α ∈ (15 ,
1
3 ], thus m ≥ ⌈

1
α⌉ ≥ 3. We prove the lemma for

this case by considering different values of m and α. When m = 3, α can only be 1
3 . The tight

bound remains unchanged (i.e., ∆⊕
2 (

1
3 ; 3) = ∆⊕

2 (
1
3)), since the disutility function constructed in

the unrestricted setting (i.e., Subcase 3.3 in Subsection B.1) contains 3 objects when α = 1
3 .

When m = 4, α ∈ [14 ,
1
3). Since v(A1) > ∆⊕

2 (α; 4) = 2α, by Claim 2, v(A2) > α. Therefore,
A1 contains at least 3 objects and A2 contains at least 2 objects, a contradiction to m = 4. For
the tightness, the disutility function contains ⌈ 1α⌉ − 1 objects with disutility α, and one object
with disutility 1− (⌈ 1α⌉ − 1)α. Sine 1

α > 3, by the pigeonhole principle, the MinMaxShare is at
least 2α.
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When m = 5, α ∈ (15 ,
1
3 ]. If α ∈ (15 ,

7
27 ] or (27 ,

1
3 ], the disutility functions constructed in

the unrestricted setting (i.e., Subcases 3.1 and 3.3 in Subsection B.1) contain 5 and 4 objects
respectively, thus the tight bounds do not change. If α ∈ ( 7

27 ,
2
7 ], since v(A1) > ∆⊕

2 (α; 5) ≥ 2α,
by Claim 2, v(A2) > α, thus A1 contains at least 3 objects and A2 contains at least 2 objects.
More accurately, since m = 5, |A1| is exactly 3 and |A2| is exactly 2. Moreover, it can be
verified that the largest disutility in A1 is at most the smallest disutility in A2. Since otherwise,
by exchanging one object in A1 with a strictly larger disutility and one object in A2 with a
strictly smaller disutility, one can get another allocation A′ = (A′

1, A
′
2) such that v(A′

1) < v(A1)
and v(A′

2) ≤ 2α < v(A1). Let A2 = {e1, e2}, it follows that v(e1) = α and v(e2) ≥ 1
3 · v(A1).

Therefore,

v(A1 ∪A2) > v(A1) + α+
1

3
v(A1) =

4

3
· v(A1) + α.

If α ∈ ( 7
27 ,

3
11 ], v(A1) > ∆⊕

2 (α; 5) =
3−3α

4 , thus

v(A1 ∪A2) >
4

3
· 3− 3α

4
+ α = 1,

a contradiction. If α ∈ ( 3
11 ,

2
7 ], v(A1) > ∆⊕

2 (α; 5) = 2α, also a contradiction since

v(A1 ∪A2) >
11

3
α > 1.

The disutility function that shows tightness for α ∈ ( 7
27 ,

3
11 ] is the same as that in Subcase 3.1

in Subsection B.1, i.e., one object with disutility α and four objects with disutility 1−α
4 . Again,

since 1
5 < 7

27 < α ≤ 3
11 < 1

3 ,
1−α
4 < α < 2 · 1−α

4 , which gives that the MinMaxShare is 3−3α
4 .

For α ∈ ( 3
11 ,

2
7 ], the disutility function is the same as that in Subcase 3.3 in Subsection B.1,

i.e., three objects with disutility α and one object with disutility 1 − 3α. Since α > 3
11 > 1

4 ,
1− 3α < α, thus the MinMaxShare is 2α.

When m ≥ 6, α ∈ (15 ,
1
3 ]. Since the disutility functions constructed in the subcases of the

unrestricted setting contain no more than 6 objects, thus the tight bounds remain unchanged.

C Missing Materials in Section 5

C.1 Proof of Claim 4

Notice that by Lemma 1 and Lemma 2, rn(α;m) is weakly increasing in m. Therefore, it suffices
to prove the claim for the setting when m is unrestricted, i.e., rn(α) ≤ 2n

n+1 . We first consider

the case where n = 2 and k = 1. In this case, α ∈ (15 ,
1
3 ]. Since α < 1

n = 1
2 , ∆

⊖
2 (α) =

1
2 . When

α ∈ (15 ,
7
27 ], ∆

⊕
2 (α) =

3−3α
4 , thus r2(α) =

3−3α
2 < 6

5 < 4
3 ; when α ∈ ( 7

27 ,
2
7 ], ∆

⊕
2 (α) =

2+3α
5 , thus

r2(α) =
4+6α

5 ≤ 8
7 < 4

3 ; when α ∈ (27 ,
1
3 ], ∆

⊕
2 (α) = 2α, thus r2(α) = 4α ≤ 4

3 .
We next consider the cases when n ≥ 3 or k ̸= 1. When α > 1

n which means α ∈ I(n, 0) or
α ∈ ( 1n ,

2
n+2 ] ∈ D(n, 0), ∆⊖

n (α) = α. Thus, when α ∈ I(n, 0), ∆⊕
n (α) = α and rn(α) = 1 < 4

3 ≤
2n
n+1 since n ≥ 2; when α ∈ ( 1n ,

2
n+2 ], ∆

⊕
n (α) =

2·(1−α)
n and rn(α) =

2
n ·

1−α
α < 2 · (1− 1

n) <
2n
n+1 .

When α ≤ 1
n , it follows that α ∈ ( 1

n+1 ,
1
n ] ∈ D(n, 0) or α ∈ I(n, k) with k ≥ 1 or α ∈ D(n, k)

with k ≥ 1. In these cases, ∆⊖
n (α) = 1

n . When α ∈ ( 1
n+1 ,

1
n ], ∆

⊕
n (α) = 2·(1−α)

n and rn(α) =

2 · (1 − α) < 2n
n+1 ; when α ∈ I(n, k) = ( k+2

n(k+1)2+k+2
, 1
kn+1 ] with k ≥ 1, ∆⊕

n (α) = (k + 1)α and

rn(α) = n(k + 1) · α ≤ kn+n
kn+1 ≤

2n
n+1 ; when α ∈ D(n, k) = ( 1

kn+n+1 ,
k+2

n(k+1)2+k+2
] with k ≥ 1,

∆⊕
n (α) =

k+2
k+1 ·

1−α
n and rn(α) =

k+2
k+1 · (1− α) < kn+2n

kn+n+1 ≤
3n

2n+1 < 2n
n+1 .

C.2 Proof of Claim 5

Note that we actually derive the ranges of α that satisfy rn(α; +∞) > 4
3 , which are necessary

conditions for rn(α;m) > 4
3 but may not be sufficient ones. We use the formulas of rn(α) derived

in the proof of Claim 4, and only consider the following cases when rn(α) may be larger than 4
3 .
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• When α ∈ ( 1n ,
2

n+2 ], rn(α) = 2
n ·

1−α
α , which is larger than 4

3 when α < 3
2n+3 . Since

3
2n+3 > 1

n only when n ≥ 4, the range is α ∈ ( 1n ,
3

2n+3) with n ≥ 4.

• When α ∈ ( 1
n+1 ,

1
n ], rn(α) = 2 · (1−α), which is larger than 4

3 when α < 1
3 . Since

1
n+1 < 1

3

only when n ≥ 3 and 1
n ≤

1
3 when n ≥ 1

3 , the range is α ∈ ( 1
n+1 ,

1
n) with n ≥ 3.

• When α ∈ I(n, k) = ( k+2
n(k+1)2+k+2

, 1
kn+1 ] with k ≥ 1, rn(α) = n(k + 1) · α, which is larger

than 4
3 when α > 4

3n(k+1) . Note that 4
3n(k+1) < 1

kn+1 is equivalent to (3 − k)n > 4,

which can be satisfied only when k = 1 or k = 2. When k = 1, (3 − k)n > 4 gives
n ≥ 3, α > 4

3n(k+1) is equivalent to α > 2
3n , and

k+2
n(k+2)2+k+2

= 3
4n+3 . Since 3

4n+3 ≥
2
3n

when n ≥ 6, the ranges are α ∈ ( 2
3n ,

1
n+1) with 3 ≤ n ≤ 5, and α ∈ ( 3

4n+3 ,
1

n+1) with

n ≥ 6. When k = 2, (3 − k)n > 4 gives n ≥ 5, α > 4
3n(k+1) is equivalent to α > 4

9n , and
k+2

n(k+2)2+k+2
= 1

4n+1 . Since
4
9n > 1

4n+1 , the range is α ∈ ( 4
9n ,

1
2n+1) with n ≥ 5.

• When α ∈ D(n, k) = ( 1
kn+n+1 ,

k+2
n(k+1)2+k+2

] with k ≥ 1, rn(α) = k+2
k+1 · (1 − α), which is

larger than 4
3 when α < 2−k

3k+6 . Note that 2−k
3k+6 > 0 only when k = 1. Then, α ≤ 2−k

3k+6 is

equivalent to α < 1
9 ,

1
kn+n+1 = 1

2n+1 and k+2
n(k+2)2+k+2

= 3
4n+3 . Since

3
4n+3 ≤

1
9 when n ≥ 6

and 1
9 > 1

2n+1 when n ≥ 5, the ranges are ( 1
2n+1 ,

3
4n+3) with n ≥ 6, and ( 1

2n+1 ,
1
9) with

n = 5.

By summarising the above ranges, we complete the proof.

C.3 More Experiments

We observe that in Fig. 4, when n = 2, the majority of random instances fall into the interval
of [1.1, 1.2), in contrast to the other values of n that are concentrated within [1.0, 1.1). This is
in part because the ratio of m over n is larger than n > 2, given each m. One may be curious
that when m becomes larger and larger to n, the majority may be close to the worst-case ratio.
Due to this curiosity, we further conduct the following experiment by setting m = 15 ± 1 and
m = 20± 1, where n is fixed at 2. The results are shown in Fig. 6. As we can see, the instances
get more concentrated within [1.1, 1.2), and the number of instances whose ratios are above 1.2
get less and less.

(a) n = 2, m = 8, 9, 10 (b) n = 2, m = 14, 15, 16

(c) n = 2, m = 19, 20, 21

Figure 6: Fixing n = 2 and increasing the value of m.
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