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Abstract

We must assign n agents to m posts subject to negative congestion: what

assignment is fair and efficient?

If congestion is anonymous (each agent adds one unit) it is always possible

to assign each agent to one of their top n out of the n×m feasible allocations.

This ordinal interpretation of Ex Ante fairness can be adjusted if congestion is

weighted (agent-specific).

An assignment is Competitive if I don’t want to move to an empty post, or

to an occupied one at its current congestion level. If it exists the competitive

assignment is essentially unique, efficient and Ex Ante fair.

Among agents endowed with cardinal vNM utilities we can randomise the

selection of our assignment. Under anonymous congestion every problem has

a unique competitive congestion profile, implemented by a mixture of deter-

ministic assignments rounding up or down the competitive congestion, and

approximately Ex Ante fair, efficient and welfare equivalent. Some of these

properties are lost under weighted congestion.
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1 introduction

Congestion affects the allocation of any commodity consumed under partial rivalry:

traffic on roads and the internet, public utilities and private services, and so on: for

just over a century it is a staple of microeconomic analysis. Pigou’s work on the

taxation of externalities([31]) inspired the search for the welfare-optimal taxation of

congestion, for instance peak load pricing of utilities ([32], [8]),Vickrey’s optimal toll

road ([39]) and the far reaching Vickrey-Clarke-Groves pricing mechanisms ([18]).

A different and equally outstanding operations research and game theory liter-

ature starts with Wardrop’s transportation model ([14]): congestion is analysed in

the decentralised free mobility regime: each agent chooses her service (what route

to use, which store to visit, etc..) and the congestion results from these non coop-

erative interactions (typically without any transfer of money). Such games include

the seminal instance of potential games ([33], [26]) and the first definition of the

price of anarchy1 ([24], [34]).

Our model uses the same physical description of assignments as a famiiar con-

gestion game (e. g. [25]): there is a set of heterogenous items subject to congestion

that we call ”posts”; each agent must be assigned to a post, and each post can take

any amount of congestion, from remaining empty to hosting everyone. The only

restriction on agents’ preferences is that at any given post they decrease strictly in

the amount of congestion. Critically cash transfers (taxes) are ruled out: agents

cannot be compensated to accept an inferior post, or pay to be assigned at a pop-

ular one. Our viewpoint is purely normative, non strategic: which of the efficient

assignments should we call fair?

Formal research on this aspect of congestion is scarce and quite recent (see de-

tails in subsection 1.2). Yet moneyless assignment problems where congestion is an

important consideration are easy to find: the allocation of jobs to busy heteroge-

nous servers, of workers to shared office spaces, patients to hospitals, students to

crowded classes, students to crowded schools, or messages to routes in a centralised

communication network. In those examples the decentralised free mobility ”choose

your own post” approach is clearly impractical (and possibly inefficient). It is also

unpalatable because it gives an unfair advantage to agents who happen to play the

game better: see the discussion of the perverse strategic implications of the Boston

1Measuring the welfare loss in the worst Nash equilibrium of the game; see e. g. [17], [35].
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school assignment mechanism ([15]).

Matching and assignment models involving “many agents to one position” rou-

tinely incorporate hard congestion constraints in the form of upper or lower bounds

on the filling of each post: maximal capacity of a class ([9]) or a school ([1]), minimal

or maximal quotas for some subsets of students ([3], [19], [27], [21]) etc.. But when

these constraints do not bite or are altogether absent, soft congestion still impacts

agents’ welfare and choices. Parents will accept more crowded classes if the school’s

academic context is better, or vice versa: the recent paper [30] on congested school

choice (on which more in the next section) offers clear evidence of this point.

Our definition of fairness, in line with seven decades of microeconomic literature

on the division of private commodities (e. g. [28]), is two-fold. First, Ex Ante

fairness focuses on the worst case welfare level that can be guaranteed to each

agent, based on their own trade-offs between posts and congestion but no other

information about the preferences of the other potentially adversarial participants.

Second, Ex Post fairness adapts the familiar Envy-Freeness property ([16], [38])

under the name of Competitiveness, to account for the fact that the congestion

itself plays the role of a price.

Our results. We identify the powerful Ex Ante test of “top-fairness” relying

only on ordinal preferences; it is always feasible and often met by only a handful

of assignments. In the deterministic model the Competitiveness property is not

always feasible, but if it is it selects a unique, fair and efficient solution. When we

randomise assignments and the agents have cardinal vNM utilities, there is always

a unique fractional competitive congestion profile, implemented by approximately

fair and efficient deterministic assignments.

1.1 overview of the paper

The deterministic model with ordinal preferences, relevant until section 5, is defined

in the short section 2. If congestion is anonymous (unweighted) an agent’s allocation

is a pair (a, sa) where a is the post and sa the number of agents at a. If each agent

i brings wi units of congestion to any post an allocation is (a,wSa) where wSa is

the total weight of the set Sa of the agents assigned to a. In both cases preferences

decrease strictly in the congestion at a.

In section 3 we have m posts, n agents and congestion is anonymous; this gives
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m× n distinct allocations. An assignment is top-n-fair if every agent i’s allocation

is one of i’s top n allocations (Definition 1). Top-n-fairness is always feasible and

compatible with efficiency (Pareto optimality); it cannot be improved: Proposition

1.

In section 4 congestion is weighted and the definition of top-fairness is more

subtle. At the Ex Ante stage agent i knows only their own weight wi and the total

weight W of all agents, but not their number: so i’s worst case allows for any finite

split of W −wi. The set of i’s feasible allocations is the union of m intervals [wi,W ],

of size m×(W−wi). An assignment is top- 1
m
-fair if each agent i gets one of their top

(W −wi) allocations (Definition 2).2 Such assignments always exist (Proposition 2)

and this guarantee cannot be improved.

Competitiveness in the ordinal model is the subject of section 5. Under anony-

mous congestion (subsection 5.1) an assignment is competitive if each agent i weakly

prefers their allocation (a, sa) to any other allocation (x, sx) at this assignment, in-

cluding to (y, 1) if the post y is empty (sy = 0) (Definition 3). Taking the largest

of sx and 1 as the congestion price of post x, the competitive demand for post a

contains sa (equals sa if each demand is single-valued). If it exists the competitive

assignment is compelling: fair in the top-n-fair and competitive senses, efficient and

(essentially) unique both in terms of congestion and welfare (Proposition 3).

The definition of competitive assignments when congestion is weighted (subsec-

tion 5.2) is entirely similar (Definition 4); they are also fair, efficient and unique

under minor restrictions on individual preferences (Definition 5 and Proposition 4).

In both models even with just two posts it is easy to give examples where

competitive assignments do not exist. To turn Competitiveness into an operational

concept of Ex Post fairness, we randomise the selection of the assignment. We

assume that the agents have von Neuman Morgenstern (vNM) cardinal utilities ui

over allocations, just as in Hylland and Zeckhauser ([20]) for the non congested

assignment problem.3

Section 6 focuses on the anonymous congestion model. A randomized assign-

ment generates a fractional expected congestion σa at post a. Agent i’s competitive

demand at the congestion profile σ = (σx)x∈A is the set D(ui, σ) of posts maximis-

2Under anonymous congestion n is also 1

m
-th of the number of allocations.

3However we cannot as they did define a competitive price in fiat money because the worth of

a post depends heavily upon its consumption by other agents.
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ing ui(x, σx) over A. The profile σ is competitive if it obtains as a (finite) convex

combination of deterministic assignments where each agent i is always assigned to

a post in D(ui, σ) (Definition 6). The key fact is that every problem (A,N, u) has a

unique competitive congestion profile σc (Lemma 1). The profile σc is implemented4

by a lottery over the deterministic assignments described above, and satisfying two

properties: each agent is always assigned to a post in their competitive demand; the

deterministic congestion sa at each post a rounds the competitive congestion σa up

or down to the nearest integer (Definition 7). Lemma 2 says that the competitive

congestion profile can be so implemented, and Theorem 1 (our second main result

together with Propositions 1,2) explains that each corresponding deterministic as-

signment is approximately top-n-fair, competitive and efficient, and that they all

have appproximately identical utilities.

We can randomise a weighted congestion problem in exactly the same way, and

postpone this discussion to the Appendix (subsection 8.3) because the results are

weaker. The fractional competitive congestion exists and is still unique under some

qualifications (Definition 8 and lemma 3). But the deterministic assignments imple-

menting it no longer approximate the competitive congestion because the relative

difference between individual weights is unbounded.

The remark at the beginning of section 6 explains why the popular randomi-

sation of the non congested assignment problem by simply extending each ordinal

preference ordering to its (incomplete) stochastic dominance ordering of random

allocations is in fact not useful under congestion.

Concluding comments in section 7 summarise our findings and suggests further

research directions: by adding upper and lower limits to the congestion of each

post; and by relaxing the strictly negative perception of congestion. The Appendix

contains a couple of proofs.

1.2 related literature

1) Two independent recent papers introduce congestion in school choice. Closest

to ours is Phan et al. [30] adding the congestion dimension to the school choice

model ([1]): students’ preferences over shools depend also on their crowding level

4We use this term in a non strategic sense: it means that σc is a convex combination of finitely

many determionistic assignments,
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measured by the per capita resources at each school. This is formally isomorphic to

our model. To manage crowding the paper adopts a market clearing definition of

ex post fairness adapting envy-freeness like we do. But the school choice viewpoint

adds hard capacity constraints as well as priorities over students for the schools: this

qualifies envy-freeness as “no justified envy” and their novel concept of Rationing

Crowding Equilibrium (RCE) is more complex than our competitive assignment;

also the proof that a RCE exists is significantly more involved. Remarkably the

RCEs have the semi-lattice structure from which emerges a maximal RCE student

optimal and unique welfarewise, as in the standard school choice model.

Phan et al’s model is deterministic and relies on ordinal preferences, so it cannot

take advantage of the convexification offered by randomisation and vNM cardinal

utilities. Still, up to a rounding argument (reminiscent of the one in our Lemma

2) in the definition of RCEs, Theorem 2 showing that the RCEs have the same

crowding profile is analog to statement i) in our Proposition 3.

Copland [13] also defines a deterministic school choice model where students

have strict ordinal preferences over allocations (a, s); instead of envy-freeness he

imposes what we call the free mobility equilibrium property (on which more below)

to balance fairly the congestion across schools. This property implies our top-

n-fairness but is substantially more permissive than envy-freeness. Copland then

proposes a variant of the Deferred Acceptance mechanism (DA with Voluntary

Withdrawals) to take into account the schools’ priorities and capacity constraints.

So the formal similarities with our results are fewer than in [30] but the general

viewpoint on congestion is still the same.

The recent follow up by Chen et al. [10] show that deciding whether a deter-

ministic competitive assignment (Definition 3 subsection 5.1) exists can be done

in polynomial time w. r. t. m and n, whereas deciding whether an Envy-Free

and top-fair assignment exists is NP-complete: in other words Competitiveness can

easily be applied in large congestion problems.

3) As mentioned in the introduction, an important result for congestion games

apply to precisely our model with preferences decreasing in anonymous congestion:

the non cooperative game where agents choose their posts independently always

has one or more Nash equilibria ([25], [23]).5 Similar games play a key role in the

5This is not true any more if congestion is weighted: [25].
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hedonic model of coalition formation ([2], [5]) and local public goods ( e. g. [6]).

The Free Mobility (FM) equilibria are logically squeezed between our two fair-

ness concepts: every FM equilibrium is top-fair and every competitive assignment is

a FM equilibrium (the converse statements do not hold). But multiple FM equilib-

ria with different welfare consequences and no clear selection is a common situation,

therefore the strategic analysis does not help us find a normatively compelling single-

valued fair assignment. See section 3 and subsection 5.1 for some examples.

4) The classic combinatorial optimisation problems known as bin packing or

knapsack ([11]) discuss like us how to fill bins (posts) with indivisible balls (agents);

but the balls there are just objects and the concern is about the welfare of the bins

(e.g., to respect a capacity constraint or to minimise the load) while we focus on

the welfare of the balls and treat the bins as objects.

One exception is [12] where each ball has its own maximal acceptable congestion

in each bin: this is exactly like our description of top-n- guarantees (section 2.2),

with the difference that the caps are exogenous in [12] so that it may not be feasible

to assign all balls. The paper shows the complexity of computing the maximal

number of balls we can assign and evaluates the price of anarchy of the corresponding

free mobility equilibrium.

2 the ordinal model: weighted and unweighted

We have m posts denoted a, b, · · · , and their set is A. Each agent i in the finite set

N of cardinality n must be assigned to some post a in A.

An assignment of agents to posts is a (quasi) partition P = (Sa)a∈A of N where

Sa is the set of agents assigned to post a; the sets Sa, Sb are mutually disjoint and

at most m − 1 of them can be empty. The set of all assignments is P(A,N), or

simply P.

anonymous congestion: the unweighted model Each agent adds one unit

of congestion at a. Given an assignment P ∈ P(A,N) the congestion at post a is

sa = |Sa| (the cardinality of Sa); we call s = (sa)a∈A the congestion profile of P .

With the notation [q] for the interval {1, · · · , q} in N, agent i’s (transitive and

complete) preference relation �i bears on the set F = A× [n] of feasible allocations

(a, sa): i is assigned to post a where the congestion is sa. Preferences are strictly
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decreasing in sa and otherwise arbitrary. The choice of A,N and a preference profile

�= (�i)i∈N defines a congestion problem (A,N,�).

agent-specific congestion: the weighted model Each agent i brings the

amount wi of congestion to her assigned post: wi is a strictly positive real num-

ber and the total congestion is W =
∑

i∈N wi. For any subset S of N we use the

notation wS =
∑

j∈S wj .

Given an assignment P ∈ P(A,N), the congestion profile is now s = (wSa)a∈A.

The set of feasible allocations (a, sa) becomes agent-specific: Fi = A × [wi,W ];

agent i has continuous preferences �i over Fi strictly decreasing in the congestion

coordinate. A congestion problem is a 4-tuple (A,N,w,�).

The discussion of both models with ordinal preferences is the subject of sections

3 to 5.

3 the canonical guarantee: anonymous congestion

Ex ante fairness provides to each agent i a worst case welfare level that only depends,

besides their own preferences, upon the number of other participants: our agent is

essentially guaranteed one of their n best out of the m× n allocations in F .

Fixing agent i with preferences �i on F a n-prefix of �i is a subset of n alloca-

tions such that each one is weakly preferred to all (m− 1)n other allocations. It is

unique if �i is strict. Welfare decreases strictly in congestion therefore if z = (a, s)

is in a certain n-prefix, so does (a, s′) for all s′ ≤ s − 1. So we can represent a

n-prefix of �i by a vector λi = (λia)a∈A such that

λia ∈ N ∪ {0} for all a, and
∑

a∈A

λia = n (1)

The n-prefix is the union over all a of the sets {a}× [λia] in F , with the convention

{a} × [0] = ∅. We write ∆N(A;n) for the set of n-prefixes defined by (1).

For instance the n-prefix λia = n, λib = 0 for b 6= a means that i (weakly) prefers

post a to any other post x, no matter how congested x and a are. Another example

has λia = ⌊ n
m
⌋ or ⌈ n

m
⌉ for all a (where ⌊x⌋ and ⌈x⌉ are the smallest and largest

integer bounded above and below by x): this agent’s priority is to minimise the

8



congestion level at whatever post they are assigned (up to the necessary rounding

up or down).

When indifferences in the preference �i allow several n-prefixes λi, it is easy to

check that any two of these differ by at most 1 in each coordinate λia.

Under anonymous congestion we define Ex Ante fairness as the guarantee that

each agent’s allocation is in one of their n-prefixes.

Definition 1 Given a problem (A,N,�) and a profile λ = (λi)i∈N of corre-

sponding n-prefixes (one λi ∈ ∆N(A;n) for each preferences �i) the assignment

P ∈ P is top-n-fair iff

sa ≤ λia for all a ∈ A and i ∈ Sa (2)

We write P(λ) for the set of top-n-fair assignments and C(λ) for the set of

congestion profiles s when P varies in P(λ).

Proposition 1 In the problem (A,N,�) there exists at least one top-n-fair

assignment P for any profile λ of corresponding n-prefixes.

Proof We use a simple greedy algorithm and an induction argument on n.

If for some post a we have λia = 0 for all i we set Sa = ∅ and it remains to

prove the claim on the residual problem (A�{a}, N, λ). We clean up in this way all

posts that nobody accepts and we assume from now on that maxi λia ≥ 1 for all a.

Clearly if the result holds for a given n, the existence of a top-n-fair assignment

holds as well for all profiles λ̃ weakly larger than λ ∈ ∆N(A;n) in all coordinates.

Pick any post a and order the caps λia, i ∈ N as λ∗1 ≥ λ∗2 ≥ · · · ≥ λ∗n. Write k̃

for the largest k s.t. λ∗k ≥ k (well defined because λ∗1 ≥ 1) and pick a k̃-prefix Sa of

the following ordering of N : i ⊣a j ⇔ λia ≥ λja of N . Then {λia}i∈Sa = {λ∗k}
1≤k≤k̃

and λja ≤ k̃ for each j ∈ N�Sa by definition of k̃.

Assigning Sa to a meets inequalities (2) for a and in the residual problem

(A�{a}, N�Sa, λ) we have
∑

b∈A�{a} λjb ≥ n − k̃ = |N�Sa| for all j. The in-

duction assumption on n concludes the proof. �

Importantly the top-n-guarantee is maximal : if all preferences �i coincide then

in any assignment P and for any common n-prefix λ0, at least one agent gets at

P their least preferred allocation in λ0: therefore the top-n-guarantee cannot be

improved.
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We illustrate the power of top-n-fairness (2) in three examples. In the first two

C(λ) is a singleton and we show the simple way to recognise this fact.

Example 1: two posts. We check that there is a single top-n-fair congestion

profile: |C(λ)| = 1. Set A = {a, b} and pick a profile λ = (λi)i∈N of n-prefixes. Label

the agents from 1 to n so that λia decreases (weakly) with i, while λib increases

(weakly). Keeping in mind λia + λib = n, the integer k̃ in the proof of Lemma 1 is

defined by the inequalities λ
k̃a

≥ k̃ ≥ λ
(k̃+1)a

⇐⇒ λ
k̃b

≤ n− k̃ ≤ λ
(k̃+1)b

.

We see that the maximal congestion at a compatible with top-n-fairness is k̃

while at b it is n− k̃: therefore (k̃, n− k̃) is the only top-n-fair congestion. Moreover

if λ
k̃
6= λ

(k̃+1)
there is also a single top-n-fair assignment.

Example 2: Here m = 4, n = 18, and there is a single top-n-fair assignment:

|P(λ)| = 1.

Agents are of five types labeled α to ε. Agents of a given type have the same

unique 18-prefix but not necessarily identical preferences, and the profile λ is

a b c d

ααα 3 2 10 3

ββββ 7 1 7 3

γγ 3 8 3 4

δδδδδ 4 2 9 3

εεεε 4 0 7 7

Check that P(λ) contains just one assignment P

P :
a b c d

ββββ γγ αααδδδδδ εεεε
(3)

We can fit top-18-fairly at most 4 agents at post a; at most 2 at post b; at most 8

at post c; at most 4 at post d. As 4+2+8+4 = 18 the only top-18-fair congestion

profile is (4, 2, 8, 4); next we see that the only way to fit 8 agents at c is with all α-s

and δ-s; then we must assign the γ-s to b and P(λ) = {P} follows.

More generally write cmx(a;λ) for the maximal number of agents we can fit λ-

fairly at post a. Lemma 1 implies
∑

a∈A cmx(a;λ) ≥ n for any λ. If
∑

a∈A cmx(a;λ) =

n then all top-n-fair assignments have the same congestion profile sa = cmx(a;λ)

for all a. The converse property holds as well (we omit the easy proof):

|C(λ)| = 1 ⇐⇒
∑

a∈A

cmx(a;λ) = n (4)
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Examples where|P(λ)| > |C(λ)| = 1 abound, e. g. Example 1 if λ
k̃
6= λ

(k̃+1)
, or

our next example.

Example 3: Here m = 3, n = 12 and |C(λ)| = 15, |P(λ)| = 953.

Agents are of two types, six in each type with identical 12-prefixes:

a b c

αααααα 6 4 2

ββββββ 2 4 6

There are three top-12-fair congestion profiles respecting the symmetry between

the two types:

P1

P2

P3

a b c

αααααα 0 ββββββ

ααααα αβ βββββ

αααα ααββ ββββ

(5)

In addition C(λ) contains six asymmetric congestion profiles (sa, sb, sc) = (6, 1, 5),

(6, 2, 4), (6, 3, 3), (6, 4, 2), (5, 4, 3), (5, 3, 4), and six more by exchanging the role of

α and β.

Count next the top-n-fair assignments: in (5) P1 allows just one assignment, but

P2 and P3 allow respectively 36 and 225 assignments by permuting agents within

their types.6 Taking all profiles of C(λ) into account gives |P(λ)| = 953.

Depending on individual preferences, some of the top-12-fair assignments (but

not all7) may be inefficient (Pareto dominated). For instance if in P3 four α-agents

prefer (a, 4) to (b, 4) and the last two have the opposite preference then only one of

the 225 corresponding assignments of the α-s between posts a and b is efficient.

two strategic interpretations of top-n-fairness Consider the direct revelation

mechanism where agents report independently their preferences and the mechanism

implements a reportedly top-n-fair assignment. Then every Nash equilibrium of

such mechanism must be top-n-fair because the truthful report ensures this. The

same is true in any mechanism in which the last stage offers to each agent the chance

to claim a top-n-fair allocation.

6For P3 at post b fifteen choices of the β-s and fifteen of the α-s .
7If P ∈ P(λ) is efficient within P(λ), it is clearly efficient within the entire feasible set.
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For the second interpretation we suppose that agent i, clueless about other

agents’ preferences at the interim stage, wants to maximise their worst case welfare:

reporting a truthful n-prefix of �i ensures this and no other report does. Indeed

in the adversarial case where everyone else reports the same λi an assignment rule

treating equals as equally as possible can give agent i anyone of the allocations

(a, λia), in particular a worst one in this set. Of course, any information about

other participants’ preferences can be used to advantage by our agent but at some

risk.

free mobility equilibria and top-n-fairness In the FM normal form game each

agent picks their post a in A and consumes (a, sa) where sa − 1 is the number of

other agents who chose a. We check that every Nash equilibrium is a top-n-fair

assignment. Fix a profile of strategies x = (xi)i∈N ∈ AN and write s(a|x) for the

resulting congestion at post a. The equilibrium property for i is (xi, s(xi|x)) �i

(a, s(a|x) + 1) for all a, a 6= xi: at such post a the only allocations i may strictly

prefer to (xi, s(xi|x)) are in {a}× [s(a|x)] so their number is at most s(a|x); adding

to those the allocations in {xi} × [s(xi|x) − 1] that our agent definitely prefers

to (xi, s(xi|x)), we see that at most (n − 1) allocations can beat (xi, s(xi|x)) and

conclude that the latter belongs to at least one n-prefix of agent i.

Recall that the FM game has at least one Nash equilibrium assignment ([25]).

Clearly these assignments can be a strict subset of P(λ); e. g. in Example 3 P1 is

a FM eq. assignment only if (a, 6) �α (b, 1) and (c, 6) �β (b, 1).

4 the canonical guarantee: weighted congestion

In the interim stage at which we define Ex Ante fairness, agent i knows their own

weight wi and the total congestion W , but neither the number of other agents filling

the congestion W − wi or their individual weights. The welfare level guaranteed

to i depends only upon these two variables and i’s preferences. This definition

does not directly generalise that of guarantees under anonymous congestion because

adversarial situations allows for any finite split of the total weight W −wi of other

participants.

The (Lebesgue measure) size of the set of agent i’s allocations Fi = A× [wi,W ]

is m(W − wi): we show below that agent i can guarantee one of their top 1
m

12



allocations in Fi, i. e., their best subset of size (W − wi). Exactly like under

anonymous congestion where out of m×n allocations in F , agent i’s n-prefixes are

the top 1
m
-th quantiles of i’s preferences.

The description of agent i’s (W − wi)-prefix is more subtle than for n-prefixes,

but on the bright side this prefix is unique for each preference �i. With the notation

[[z]] for the number of strictly positive coordinates of z ∈ RA
+, a (W − wi)-prefix is

described by a vector λi = (λia)a∈A such that

for each a : λia = 0 or wi ≤ λia ≤ W , and
∑

a∈A

λia = W + ([[λi]]− 1)wi (6)

The (W−wi)-prefix captured by the vector λi above is as follows. If λia ∈ [wi,W ]

it contains all allocations in {a}× [wi, λia]. In particular λia = wi means that agent

i can be at post a only if she is alone there. If λia = 0 agent i cannot be assigned

to post a.

Notice that changing λia from 0 to wi adds wi to both sides of (6), therefore

ruling out post a out or accepting it only if i is alone there has no impact on the

equality constraint in (6). For instance if λia = W our agent can still choose to

accept any subset of the other posts provided she is alone there.

Let B be the (strict and possibly empty) subset B of the posts such that λi = 0;

the total size of the allocations in (A�B)× [wi,W ] that λi allows is

∑

a∈A�B

(λia − wi) =
∑

a∈A

λia − (m− |B|)wi = W − wi

therefore λi cuts a subset of size (W−wi) in Fi as announced two paragraphs before

(6). Moreover for any preference �ithe top
1
m

quantile in Fi = A×[wi,W ] is unique:

this is clear by continuity of preferences and strictness in each {a} × [wi,W ]. Then

we set λia = 0 if and only if this set does not contain any allocation at post a and

λi is uniquely defined as well.

Definition 2 In the problem (A,N,�, w) where λi meeting (6) is the (W −wi)-

prefix of �i, an assignment P is top- 1
m
-fair if and only if

∑

j∈Sa

wj ≤ λia for all a ∈ A and all i ∈ Sa

Proposition 2 In any problem (A,N,�, w) there exists at least one top- 1
m
-fair

assignment P .
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Proof in the Appendix section 8.1. There we also state and prove that the

canonical guarantee is maximal, just like when congestion is anonymous.

Finding the top- 1
m
-fair assignments is more difficult with weighted rather than

unweighted congestion. This is already clear with two posts.

Example 4: Two posts and three agents, m = 2, n = 3, and W = 10. The

weights wi and (W − wi)-prefixes are

a b w

α 10 6 6

β 6 6 2

γ 8 4 2

Here α’s feasible set is Fα = {a}× [6, 10]∪{b}× [6, 10] and its 4-prefix {a}× [6, 10]∪

{(b, 6)}; similarly γ accepts allocations in {a} × [2, 8] ∪ {b} × [2, 4].

Suppose every agent i’s preferences over allocations are represented by the slack

utilities:8

ui(x,wSx) = λix − wSx for all x (7)

We find three top-12 -fair assignments with very different congestion and utilities

assignments:

a b

P1 α βγ

P2 αγ β

P3 βγ α

utilities:

α β γ

P1 4 2 0

P2 2 4 0

P3 0 2 4

Recall that with anonymous congestion and strict preferences (Example 1 section

3) two-post problems have a unique top-n-assignment.

A Free Mobility equilibrium with weighted congestion may have no equilibrium

(see an example in section 8 of [25]) but if it does, the corresponding assignment

is top- 1
m
-fair. Fix such an assignment P where (a,wSa) is agent i’s equilibrium

allocation. To (a,wSa) our agent prefers the allocations {a}× [wi, wSa ] and possibly

those in {x}× [wi, wSx +wi]: the total length of those sets is exactly W −wi, which

proves the claim.

8This simple utility function derived from just its individual prefix is frequently used in the rest

of the paper, both with ordinal preferences and cardinal utilities.
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5 deterministic competitive assignments

5.1 under anonymous congestion

We use the notation z ∨ y = max{z, y}.

Definition 3 In problem (A,N,�) the assignment P is competitive (Comp) iff

for all a ∈ A and i ∈ Sa : (a, sa) �i (x, sx ∨ 1) for all x ∈ A (8)

If all posts are occupied (sx ≥ 1 for all x) property (8) is just envy-freeness:

switching my allocation to yours is a virtual move that does not affect the congestion

at your post (unlike an actual move in the FM game). Interpreting the congestion

sx at post x as the “price” of consuming x, my competitive demand is the allocation

(x, sx) when I assume that the price vector is fixed.

Property (8) assigns a price of 1 to an empty post x and insists that our agent

does not want to move there either: this is important because an assignment where

all agents share a single post a is automatically envy-free, but can be the absolute

worst assignment for everyone.

Proposition 3 Fix a problem (A,N,�).

i) All competitive assignments have the same congestion profile (except possibly at

some posts occupied by at most one agent), and the same welfare profile.

ii) A competitive assignment is weakly efficient, and efficient if preferences are strict

and/or if all posts are occupied.

iii) A competitive assignment is top-n-fair.

Proof At the congestion profile s ∈ ∆N(A;n) ((1)) we define agent i’s compet-

itive demand as

D(i; s) = {a|(a, sa ∨ 1) �i (x, sx ∨ 1) for all x ∈ A} (9)

The assignment P is competitive if and only if a ∈ D(i; s) whenever i ∈ Sa.

Statement i) Unique congestion. We fix two different congestion profiles s, s∗ coming

from the competitive assignments P = (Sx)x∈A and P ∗ = (S∗
x)x∈A.

Define the set A∗ = {a ∈ A : s∗a ∨ 1 > sa ∨ 1} and assume that A∗ is non empty,

which will lead to a contradiction. Note that in A∗ we have s∗a > sa, 1.

Fixing an agent i we claim that if D(i; s∗) intersects A∗ then D(i; s) must be a

subset of A∗. If the claim fails there is some b ∈ D(i; s) outside A∗ such that for all a
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in A∗: (b, sb∨1) �i (a, sa∨1) ≻i (a, s
∗
a) (strict preference because s

∗
a > sa, 1). By the

choice of b we also have sb∨1 ≥ s∗b∨1; therefore (b, s
∗
b∨1) �i (b, sb∨1) ≻i (a, s

∗
a), and

as a was arbitrary in A∗ it follows that D(i; s∗) cannot intersect A∗, contradiction.

Now for each i ∈ ∪a∈A∗S∗
a the claim says D(i; s) ⊆ A∗ therefore i is assigned

to A∗ by P . This implies
∑

a∈A∗ sa ≥
∑

a∈A∗ s∗a, contradicting s∗a > sa in A∗. We

conclude that A∗ is empty.

So P,P ∗ must be such that s∗a ∨ 1 = sa ∨ 1 for all a: SO s∗a 6= sa can only

happen when {s∗a, sa} = {0, 1}, as claimed in statement i). Moreover the competitive

demands at s and s∗ coincide.

A simple example with multiple competitive congestion profiles has all agents

except 1 and 2 refusing the three posts a, b, c, while 1 and 2 refuse all but a, b, c

and they are indifferent between (a, 1), (b, 1) and (c, 1): combining a competitive

sub-assignment of N�{1, 2} to A�{a, b, c} with any assignment where agents 1,2

occupy two of a, b, c is competitive in the full problem.

Unique welfare. We fix an agent i in Sa and S∗
b and show that i is indifferent

between the two assignments. From sa, s
∗
b ≥ 1 and Definition 3 we have

(a, sa) �i (b, sb ∨ 1) and (b, s∗b) �i (a, s
∗
a ∨ 1) (10)

If sa = s∗a and sb = s∗b we are done. If sa 6= s∗a and sb = s∗b the equality s∗a∨1 = sa∨1

implies sa = 1 > 0 = s∗a; then s∗b ≥ 1 and (10) give (a, 1) �i (b, sb) = (b, s∗b) �i (a, 1)

as desired. The last subcase sa 6= s∗a and sb 6= s∗b is just as easy.

Statement ii) Efficiency. Assume, to the contrary that P = (Sx) is competitive and

Pareto inferior to Q = (Tx). Say agent i, assigned to a at P , is assigned to b at Q

(a, b are not necessarily distinct) and suppose that post b is occupied at P : sb ≥ 1.

Then by Comp and the weak Pareto improvement we have

(b, sb) �i (a, sa) �i (b, tb) =⇒ sb ≥ tb (11)

and sb > tb if agent i improves strictly at Q.

If all posts are occupied at P (11) implies s = t and we have a contradiction. If

instead some agent i goes from a at P to c at Q and c is empty at P , sc = 0, we

have

(c, 1) �i (a, sa) �i (c, tc) =⇒ tc = 1 and (a, sa) ≃i (c, 1) (12)
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This is a contradiction if preferences are strict, and we conclude again that P is

Pareto optimal. If indifferences are possible we see that i is a weak Pareto optimum

(not all agents benefit strictly).

The argument above explains how a competitive assignment can be Pareto infe-

rior: in the situation (12) moving i from a to c and changing nothing else is a Pareto

improvement to a new assignment P̃ where agents in Sa�{a} benefit strictly while

all others are unaffected.

Note that P̃ is not competitive if sa ≥ 2 because i prefers strictly (a, sa − 1) to

(a, sa) and therefore to (c, 1); but if sa = 1 then P̃ is competitive and welfare-wise

indifferent to P .

We have shown that Pareto improving a competitive assignment is only possible

if �i is not strict and some post is unoccupied.

Statement iii) top-n-fairness. A FM equilibrium is top-n-fair (section 3). Now a

competitive assignment is clearly a FM equilibrium. �

Proposition 3 vindicates a competitive assignment as the essentially single-

valued, fair and efficient solution to the congested assignment problem, precisely

what we set out to discover. But it is as easy to find problems where such assign-

ment exists as where they don’t. Recall that deciding if one exists in a given prob-

lem is computable in polynomial time ([10]). Deciding when existence is “likely” in

some plausible domain of preferences is therefore a feasible numerical and empirical

project.

Start with an extreme example where n = m and every agent’s n-prefix is

λia = 1 for all a: they insist on being alone at their assigned post. An assignment is

top-n-fair if and only if it is a one-to-one (non congested) assignment. Therefore a

competitive one exists only if we can match each agent with one of their best posts.

By contrast any assignment is a FM equilibrium outcome.

In Example 2 (section 3) P ((3)) is the the unique top-18-fair assignment. As-

sume that the preferences of each agent i with n-prefix λi are described by the slack

utilities ui = λia − sa as in (7). Then it is easy to check that P is competitive.9

However, if the preferences of some α,say, change to (b, 2) ≻α (c, 8) (compatible

with the given n-prefixes) then P is no longer competitive.

9At P the congestion profile is (a, 4), (b, 2), (c, 8), (d, 4) so the α-s’ utility at c is 2 and at most

0 at any other post; the β-s’ utility at a is 3 and at most 1 elsewhere; etc...
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Turning to Example 3 (section 3) and maintaining the slack utilities assumption,

we find that none of the hundreds of top-12-assignments is competitive: at P1 in

(5) all agents want to move to b; at P2 all agents at a or c envy those at b, and the

reverse statement holds at P3. Checking all asymmetric congestion profiles is just

as easy.

Our last two examples have three posts and six agents, m = 3, n = 6, and three

pairs of identical agents with a cyclical pattern in their preferences. We use them

to illustrate the welfare performance of competitive assignments within the set of

FM eq. assignments (to which they belong by Definition 3).

Example 5.1 Where the competitive assignment Pareto dominates two more

FM equ. outcomes. Each agent has a single 6-prefix, a single top-n-fair congestion

profile C(λ) = {(2, 2, 2)} (by (4)) and ten top-6-fair assignments

a b c

αα 3 2 1

ββ 1 3 2

γγ 2 1 3

P1

P2

P3

a b c

αα ββ γγ

γγ αα ββ

αγ αβ βγ

(13)

because P3 defines eight assignments by permuting agents within types.

If preferences are described by the slack utilities (7), only P1 is competitive with

utility 1 for everyone while P2, P3 are FM equ. outcomes Pareto inferior to P1.
10

Example 5.2 With a competitive assignment and other non Pareto comparable

FM eq. assignments. The unique prefixes and preferences are as follows:

a b c

αα 3 3 0

ββ 3 0 3

γγ 0 3 3

α : (a, 2) ≻α (b, 2) ≻α (b, 3) ≻α (a, 3)

β : (c, 2) ≃β (a, 2)

γ : (c, 1) ≻γ (b, 2) ≻γ (b, 3) ≻γ (c, 2)

The following competitive assignment P1 is not welfare comparable to the non-

10Respectively with utility 0 for everyone at P2, or 0 and 1 in each type at P3.
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competitive FM equ. assignments P2and P3.
11

P1

P2

P3

a b c

αα γγ ββ

ββ ααγ γ

αβ αγγ β

5.2 under weighted congestion

Definition 4 In problem (A,N,�, w), the assignment P is competitive (Comp) iff

for all a ∈ A and i ∈ Sa : (a,wSa) �i (x,wSx ∨ wi) for all x ∈ A

The interpretation is the same as before, except that the “congestion price” of a

post is now agent-specific. As before competitiveness implies top-fairness, but the

critical uniqueness and efficiency properties require some qualification.

Definition 5 The assignment P is crowded iff |Sa| ≥ 2 or Sa = ∅ for all a.

The ordinal preferences �i are semi-strict iff for any distinct posts a, b and any

agent i and S s. t. i ∈ S ⊆ N , agent i is not indifferent between (a,wi) and

(b, wS).

Proposition 4: Fix a problem (A,N,�, w).

i) If all preferences �i are semi-strict then all competitive assignments have the

same congestion and welfare profiles. The same is true if at least one competitive

assignment is crowded.

ii) If all preferences are semi-strict a competitive assignment is efficient.

iii) A competitive assignment is top- 1
m
-fair

Proof in the Appendix section 8.2.

To ilIustrate the role of the semi-strictness assumption in statement i) it is

enough to check that in the two-post Example 4 section 4, P1 and P2 are both

competitive assignments with different welfare and even congestion profiles.

11The α-s prefer P1 to P2 and P3 (at least weakly); the β-s prefer P3 to P1 (at least weakly) and

are indifferent between P1 and P2; the γ-s strictly prefer P1 to P3 and disagree when comparing

P1 to P2.
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6 competitive fractional assignments under anonymous

congestion

In the randomised version of the unweighted model we endow each agent i with a

cardinal vNM utility ui(a, s) over A × [n]. Fixing the post a and some expected

congestion σ at a we write ui(a, σ) for the linear interpolation of ui(a, s) between

⌊σ⌋ and ⌈σ⌉ (the two rounded up and down values of σ):

ui(a, σ) =
⌈σ⌉ − σ

⌈σ⌉ − ⌊σ⌋
ui(a, ⌊σ⌋) +

σ − ⌊σ⌋

⌈σ⌉ − ⌊σ⌋
ui(a, ⌈σ⌉) for all non-integer σ (14)

So ui(a, σ) is continuous and strictly decreasing in σ ∈ [1, n].

The competitive approach becomes operational because it selects in every prob-

lem a unique competitive congestion profile and implements it by a lottery over

approximately competitive deterministic assignments. The similar randomisation

in the weighted congestion model still identifies an essentially unique congestion pro-

file, but its implementation is less satisfactory. See subection 8.3 in the Appendix

for details.

For a finite set Z the notation ∆R(Z; y) is the simplex with non negative real

coordinates in Z adding up to the real number y. The key variable of a random

assignment is the expected congestion σa at each post a: the congestion profile σ =

(σa)a∈A varies in ∆R(A;n). Note that σa < 1 is possible: in this case the definitions

below make sure that each agent perceives a congestion of 1 at a, so ui(a, σ) is not

defined if σ ∈ [0, 1[. Moreover in Definition 7 describing the implementation of a

random congestion σ by a lottery over deterministic assignments, post a’s congestion

at the latter assignments takes only the values ⌊σa⌋ and ⌈σa⌉, so that equation (14)

is indeed the relevant vNM expected utility at (a, σ).

As in the proof of Proposition 3 we define agent i’s competitive demand at the

expected congestion profile σ ∈ ∆R(A;n):

D(ui, σ) = argmax
x∈A

ui(x, σx ∨ 1) (15)

This demand ignores the effect of agent i’s own presence at post x but correctly

anticipates that the ex post congestion will round σx up or down. Our key definition

comes next.
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Definition 6: In the problem (A,N, u) the fractional congestion profile σ ∈

∆R(A;n) is competitive (Comp) iff

σ ∈
∑

i∈N

∆R[D(ui, σ); 1] (16)

Property (16) means that we can achieve the congestion profile σ∗ by assigning

randomly each agent, with a well chosen probability distribution, over the posts in

her competitive demand. Writing this probability distribution as (πia) we obtain a

semi-stochastic matrix Π = [πia] ∈ [0, 1]N×A (each row sums to 1) realising σ and

with competitive support:

σa =
∑

i∈N

πia for all a ∈ A (17)

{πia > 0 =⇒ a ∈ D(ui, σ)} for all i ∈ N, a ∈ A (18)

There may be more than one matrix Π realising a given congestion profile σ.

Lemma 1: In every problem (A,N, u) there is a unique competitive congestion

profile σc, except possibly at some posts where σc
a ≤ 1,12 and a unique competitive

demand.

Proof Existence. It follows from the Kakutani fixed point theorem applied to

the convex compact valued correspondence Γ(σ) =
∑

i∈N ∆R(D(ui, σ); 1) mapping

∆R(A;n) into itself. To check that the graph of Γ is closed (implying that Γ is

upper-semi-continuous) we take a sequence (σt, τ t)∞t=1 in [∆R(A;n)]2 converging to

(σ, τ) and s. t. τ t =
∑

i∈N τ ti and τ ti ∈ ∆R[D(ui, σ
t); 1]. We can find a subsequence

such that all sequences {τ ti} converge, and all sets D(ui, σ
t) are constant in t, so

that τ ∈ Γ(σ) as desired.

Uniqueness. We adapt the proof of statement i) in Proposition 3. Assume σ, σ∗

are two different competitive profiles with corresponding matrices Π and Π∗ in (17),

(18). We set A∗ = {a ∈ A|σ∗
a∨1 > σa∨1} and check, exactly like in the deterministic

proof, that if an agent i is s. t. D(ui;σ
∗) intersects A∗ at some a, then D(ui;σ)

must be a subset of A∗.

Therefore for any i s. t.
∑

a∈A∗ π∗
ia > 0 we have

∑
a∈A∗ π∗

ia ≤ 1 =
∑

a∈A∗ πia.

Summing up over all agents this gives
∑

a∈A∗ σ∗
a =

∑
i∈N,a∈A∗ π∗

ia ≤
∑

i∈N,a∈A∗ πia =

12If σ, σ∗ are both competitive and σ∗

a 6= σa at some post a, then σ∗

a, σa ≤ 1.
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∑
a∈A∗ σa, a contradiction of the assumption σ∗

a > σa in A∗. We conclude that A∗

is empty: σ∗
a∨1 ≤ σa∨1 for all a. The opposite inequality holds by exchanging the

roles of σ and σ∗, implying σ∗
a ∨ 1 = σa ∨ 1 and the desired conclusion that σ∗

a 6= σa

can only happen when both are at most 1.

Because an agent evaluates being assigned to a post with expected congestion

at most 1 as being alone there (definition (15)) this implies D(ui, σ) = D(ui, σ
∗),

therefore σ and σ∗ generate the same competitive demand. �

Definition 7: In the problem (A,N, u) the list ({P k}Kk=1,L) of K deterministic

assignments P k together with a lottery L over [K], implements the competitive

congestion profile σc if, first, the expected congestion over these K assignments is

σc: EL(s
k
a) = σc

a for all a; and second for all k ∈ [K], all i,all a and all k we have:

i ∈ Sk
a =⇒ a ∈ D(ui, σ

c) and ska = ⌊σc
a⌋ or ⌈σc

a⌉ (19)

Property (19) says that anyone of the assignments P k is ex post fair in the sense

that each agent is at a post in his competitive demand (based on the expected

congestion σc) and the actual congestion at P k is an integer rounding of the latter.

Lemma 2: In every problem (A,N, u) we can implement the competitive con-

gestion profile σc by (typically several) lists ({P k}Kk=1,L) as in Definition 4.

Corollary: If σc is integer-valued each assignment P k is competitive and im-

plements σc.

Proof Define the set S of semi-stochastic matrices Π s.t. for all a and i:

{πia > 0 =⇒ a ∈ D(ui, σ
c)} and ⌊σc

a⌋ ≤
∑

i∈N πia ≤ ⌈σc
a⌉. This set is a convex

compact polytope, non empty as it contains any matrix Πc realising σc. We claim

that each extreme point Πk of S is deterministic, i. e., its entries are all integers

or zero; so Πk is a deterministic assignment P k meeting (19) and Πc is a convex

combination of such extreme points: this gives us the desired collection P k and

lottery L.

We prove the claim by contradiction. Pick an extreme point Π of S and associate

to Π the bipartite graph G on N × A containing the edge ia iff πia > 0. Extract

from G the subgraph G0 of its fractional entries ia, i. e., 0 < πia < 1, and let F be

the set of posts a s.t.
∑

i∈N πia is fractional (not an integer or zero). If F is non

empty it contains some post a: at least one edge ia is in G0; then at least one other

edge ib is in G0 (Π is semi-stochastic at i); if b ∈ F then we can add a small ε to
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πia and take away ε from πib without leaving S, or vice versa: this contradicts the

extremality of Π, so b is not in F after all. But then there is another edge jb in G0

because
∑

i∈N πib is an integer, and again there is some new edge jc in G0; if c = a

or c ∈ F we can as above perturb a little the entries of Π in two opposite ways and

reach a contradiction. This construction must stop at a new post in F or cycle back

to a: in both cases we can perturb the path or cycle in opposite directions. The

claim is proved and the proof is complete. �

Our main result refines the properties of the deterministic assignments P k se-

lected ex post to implement the competitive congestion: any two such assignments

yield approximately identical utilities; and each P k shares (approximately) the prop-

erties of deterministic competitive assignments in Proposition 1. We use for agent

i’s approximation parameter her worst utility loss from one additional unit of con-

gestion δi = max(a,s)∈A×[n]{ui(a, s) − ui(a, s + 1)}. For instance δi = 1 for a slack

utility ui = λia − sa.

Theorem 1 Fix a problem (A,N, u), a list ({P k}Kk=1,L) implementing the com-

petitive congestion σc (Definition 6) and write Uk = (Uk
i )i∈N the utility profile at

assignment P k.

i) Each P k is top-n-fair up to at most one unit of congestion: for all i ∈ N there

is a n-prefix λi of ui such that i ∈ Sk
a =⇒ ska ≤ λia + 1.

ii) Utilities at two assignments P k, P ℓ differ by at most 2δi: |Uk
i − U ℓ

i | ≤ 2δi for

all i and all k, ℓ ∈ [K].

iii) Each P k is 2δi-competitive: Uk
i ≥ ui(x, s

k
x ∨ 1)− 2δi for all i and all x.

iv) Each assignment P k is (2δi + ε)-efficient for any ε > 0: no assignment Q ∈

P(A,N) Pareto dominates the profile (Uk
i + 2δi + ε)i∈N .

If in addition σc
a ≥ 1 for all a, we can say more. Let U c

i be the value ui(a, σ
c
a)

common to all a ∈ D(ui, σ
c), then the profile (U c

i )i∈N is efficient13; finally we have

Uk
i > U c

i − δi for all i and all k ∈ [K].

Proof Statement i) Fix P k and write its congestion profile simply as (sx)x∈A,

then fix an agent i and her allocation (a, sa) at P
k; finally [σc] is the support of the

competitive congestion, containing x iff σc
x > 0.

Suppose first sa ≥ 2. By (19) we have sa−1 ≤ ⌊σc
a⌋ therefore σ

c
a ≥ 1. We apply

repeatedly the monotonicity of ui(x, s) in s and property (19).

13Not dominated by the utility profile of any assignment Q ∈ P(A,N).
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For all x ∈ [σc]: ui(a, sa− 1) ≥ ui(a, ⌊σ
c
a⌋) ≥ ui(a, σ

c
a) ≥ ui(x, σ

c
x ∨ 1) ≥ ui(x, ⌈σ

c
x⌉),

where the last inequality follows from σc
x > 0. These inequalities imply that agent

i prefers to (a, sa − 1): at most ⌊σc
a⌋ − 1 less congested allocations at post a; at

most ⌈σc
x⌉ − 1 ≤ ⌊σc

x⌋ allocations at post x if σc
x > 0; and if σc

y = 0 (19) gives

ui(a, sa) ≥ ui(y, 1) so no allocation at y improves (a, sa) or (a, sa − 1) for our

agent i. We see that the number of allocations improving (a, sa − 1) is at most

(
∑

x∈A⌊σ
c
x⌋) − 1 ≤

∑
x∈A σc

x − 1 = n − 1. As in Proposition 1 we conclude that

(a, sa − 1) is top-n-fair, and we are done.

In the case sa = 1 the argument is simpler. The allocation (a, 1) is the best at

post a; at any other post x the inequality ui(a, 1) ≥ ui(x, σ
c
x ∨ 1) implies it can be

improved by at most ⌊σc
x⌋ − 1 less congested allocations (or zero if σc

x < 1). Then

the allocation (a, sa) itself is top-n-fair.

Statement ii) Fix P k, P ℓ, a, b and i ∈ Sk
a ∩ Sℓ

b . By (19) a, b are both in D(ui, σ
c)

hence ui(a, σ
c
a ∨ 1) = ui(b, σ

c
b ∨ 1). By (19) again and the definition of δi we have

|ui(a, s
k
a) − ui(a, σ

c
a ∨ 1)| ≤ δi and |ui(b, s

ℓ
b) − ui(b, σ

c
b ∨ 1)| ≤ δi, so the desired

inequality follows.

Statement iii) We fix i ∈ Sk
a and x then combine three inequalities: a ∈ D(ui, σ

c)

gives ui(a, σ
c
a ∨ 1) ≥ ui(x, σ

c
x ∨ 1); next |ui(a, s

k
a) − ui(a, σ

c
a ∨ 1)| ≤ δi follows from

|ska −σc
a| < 1 ((19)) and the definition of δi; similarly |ui(x, s

k
x)−ui(a, σ

c
x ∨ 1)| ≤ δi.

Statement iv) For the first part of the statement we fix P k and Q = (Tx)x∈A in

P(A,N). There is at least one post b in the support of Q (Tb 6= ∅) such that skb ≤ tb:

otherwise tb < skb for each b s. t. tb ≥ 1, which contradicts
∑

A tb =
∑

A skb = n.

Pick such a post b, some i ∈ Tb, and let a be the post assigned to i by P k (a = b is

possible). By statement iii) we have ui(a, s
k
a) ≥ ui(b, s

k
b ∨1)−2δi and ui(b, s

k
b ∨1) ≥

ui(b, tb) by our choice of b. So Q does not improve P k by more than 2δi for all

agents in Tb.

For the second part we have σc
a ≥ 1 for all a. Assume that the utility profile of a

deterministic assignment Q = (Tx)x∈A Pareto dominates (U c
i )i∈N . For any post a in

the support of Q and agent i ∈ Ta, the definition of the competitive demand ((15))

and the choice of Q imply ui(a, σ
c
a) ≤ U c

i ≤ ui(a, ta) and in turn ta ≤ σc
a for all a.

As
∑

a ta =
∑

a σ
c
a we conclude t = σc and the inequalities above are equalities, so

Q’s utility profile is exactly (U c
i )i∈N , and Q does not dominate (U c

i )i∈N after all.

Next for any P k, any i and a such that i ∈ Sk
a , Definition 4 implies ska ≤ ⌈σc

a⌉ <
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σc
a + 1 hence ui(a, s

k
a) > ui(a, σ

c
a + 1) ≥ ui(a, σ

c
a)− δi = U c

i − δi as desired. �

The simplest examples of a fractional competitive assignments have only two

posts.

Example 6 Two posts and eight agents of three types, m = 2, n = 8. The

prefixes allow a single top-n-fair assignment

a b

αααα 8 0

ββ 4 4

γγ 0 8

top-8-fair P1 :
a b

αααα ββγγ

P1 is competitive if and only if both β-s prefer (at least weakly (b, 4) to (a, 4).

We assume instead (a, 4) ≻β (b, 4) for both β-s, so at P1 they both envy post a.

Their cardinal utilities differ slightly: β1 suffers comparatively less than β2 at (a, 5)

(a, 5) (b, 4) (a, 4) (b, 3)

uβ1
0 0 1 2

uβ2
−1 0 1 2

The competitive fractional congestion must load post a more than post b: σc =

(4+x, 4−x) for some x ≥ 0, therefore some deterministic assignment implementing

σc will violate top-8-fairness. By statement i) in Theorem 1 we have x ≤ 1, so

the demand of the α-s and γ-s will not change. To meet property (16) we need

D(uβi
, σ) = {a, b} for i = 1 or 2: the correct choice is D(uβ2

, σ) = {a, b}, implying

x = 1
4 then D(uβ1

, σ) = {a}.14

The lottery 3
4P1 +

1
4P2 where

P2 =
a b

ααααβ2 β1γγ

implements σc = (41
4 , 3

3
4 ) as specified by Theorem 1.

Note that for agent β2, conditional on being at post a the expected congestion

there is 5, not 41
4 : reasoning competitively β2 accepts both posts at σc without

taking into account the impact of their own assignment to a on the congestion there.

By property (19) this discrepancy is at most one unit of congestion, irrespective of

the size of n and m.
14Choosing D(uβ

1
, σ) = {a, b} forces x′ = 1

3
then D(uβ

2
, σ) = {b}, and (16) fails.
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Comparing the competitive lottery 3
4P1 +

1
4P2 and the top-n-fair assignment P1

(also the only FM equ. outcome), agent β1 and the γ-s prefer the lottery while β2

and the α-s have the opposite preference.

Example 3 continued from section 3. m = 3, n = 12.

The two types of agents have the following 12-prefixes

a b c

αααααα 6 4 2

ββββββ 2 4 6

Suppose ordinal preferences are captured by the slack utilities (7). Their vNM

extension to real valued congestion (14) is still linear in congestion: ui(a, σa) =

λia − σa.

We checked in section 3 that no deterministic assignment is competitive. The

unique competitive fractional congestion respects the symmetries of the problem

(this is a general property following its definition by the fixed point property (16)),

so we look for σc = (x, y, x) with 2x + y = 12. The only choice generating the

demands D(uα, σ) = {a, b}, D(uβ , σ) = {b, c} is σc = (42
3 , 2

2
3 , 4

2
3 ).

To implement σc we must combine top-12-fair deterministic assignments where

sa, sc ∈ {4, 5} and sb ∈ {2, 3}, which leaves exactly three choices

a b c

P2 ααααα αβ βββββ

P4 ααααα αββ ββββ

P5 αααα ααβ βββββ

Only P2 is symmetric, it was already introduced in (5).

The lottery Lc = 1
3P2 +

1
3P4 +

1
3P5 (plus a uniform mixing of the α-s and of the

β-s in their respective roles) is in this case the unique implementation of σc.

The expected total utility of the α-s is 1
3(7+ 6+10) so each agent’s expects the

utility 1.28. But the symmetric and top-12-fair assignment

P3 :
a b c

αααα ααββ ββββ

collects more expected utility. After the uniform mixing inside each type, everyone

gets 1.33.
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The trade-off is between gathering more surplus at P3 but allowing sb = 4 so

that the agents assigned to b are (ex ante and ex post) envious by a margin of 2

units of congestion, versus losing some surplus at the competitive lottery Lc while

generating no ex ante envy and ex post envy only at the level of 1 unit of congestion.

Remark In the non congested assignment model another approach to randomi-

sation extends each deterministic ordinal preference ordering to its (incomplete)

stochastic dominance ordering of random allocations; More popular in this century;

than cardinal vNM.

In the congested model this ordinal definition of competitiveness fails because it

is vastly underspecified: if we fix an arbitrary congestion profile (sx) we can force

the PS algorithm ([7], [22], [4]) to implement it15 and easily select an envy free

and ordinally efficient random assignment, but it is not clear what deeper principle

should guide the choice of that congestion profile.

7 concluding comments

We submit that our competitive analysis applies to a rich family of congested as-

signment problems and delivers an efficient solution built upon compelling fairness

principles.

main results Whether congestion is anonymous or weighted, the canonical guar-

antee eliminates for each participant all but the best 1
m
-th quantile of the feasible

allocations, where m is the number of posts (Propositions 1 and 2).

Competitiveness, when it exists in the deterministic version of either model,

identifies an essentially single assignment in terms of congestion and welfare. Com-

bining efficiency with natural ex ante and ex post fairness properties, it is then a

compelling normative solution to the congested assignment problem (Propositions

3 and 4).

After elicitating vNM cardinal utilities rather than simpler ordinal preferences,

the randomised competitive demand is unique (Lemmas 1 and 3) and implemented

by a lottery over competitive deterministic assignments (Lemmas 2 and 4). In the

15For each post x we construct sx copies of the allocation (x, sx) and assign (randomly) these n

objects to the n agents.
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anonymous case the latter are close to each other, as well as approximately top-n-

fair, competitive, and efficient (Theorem 1).

two open questions 1). The addition of post-specific lower and upper bounds

on congestion is natural in many of the motivating examples discussed in the In-

troduction. Under anonymous congestion we can easily generalise the concept of

top-n-fair guarantee but its interpretation is a bit more involved. For agent i the

profile λi must satisfy (1) as well as the bounds: γ−a ≤ λia ≤ γ+a for all a. So the

number of allocations that may or may not be accepted by λi is
∑

a(γ
+
a − γ−a ) and

λi captures the best (n−
∑

a γ
−
a ) of these. Then Proposition 1 goes through exactly

as before.

Competitiveness is much harder to adapt. Its definition generalises when we

have only upper bounds, but we lose the critical fixed point argument in Lemma 1

for the existence of a randomised competitive congestion profile.

With lower bounds it is not clear what the definition of competitiveness should

be: how to account for the situation where a lower bound γ−a forces the agents to

populate a post a that they unanimously loath?

2). A natural “dual” domain of preferences views congestion as strictly desirable:

(a, s + 1) ≻ (a, s) for all a and s. The top-fairness idea still works (at least under

anonymous congestion) but with much less bite. Interpret the report λi satisfying

(1) as “agent i accepts (a, s) only if s ≥ λia”.These constraints over all agents are

jointly feasible and allow each agent to veto at most n−1 allocations, avoiding only

the lowest 1
m

quantile of their preferences. The proof mimicks that of Proposition

1 by switching a couple of signs.

The Definition 3 of a competitive assignment is unchanged but no longer identi-

fies a unique solution for deterministic assignments (e. g. when everyone cares only

about joining the most congested post). Proposing and justifying in the competitive

spirit a fair randomised compromise in the “good congestion” model is a challenging

question
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8 appendix

8.1 proof of Proposition 2

After proving that in any problem (A,N,�, w) there exists at least one top- 1
m
-

fair assignment P , we state and prove the maximality property of the canonical

guarantee.

Existence. As in Proposition 1 we combine a greedy algorithm and an induction

on the number of agents. We can clearly get rid of the “inactive” posts s. t. λia = 0

for all i, so we still write A for the set of active posts. We pick any post a and

construct a set S ⊆ A s. t.

∀i ∈ S : λia ≥ wS and ∀j ∈ N�S : λja < wS + wj (20)

Label the agents from 1 to n so that λia ≥ λ(i+1)a for all i ∈ [n − 1] where

λ1a > 0 because a is active. For any two disjoints subsets S, T in A we say that S

rejects T if λia < wS +wT for some i ∈ S; otherwise we say that S accepts T . Note

that if all labels in S are (weakly) smaller than all in T and S rejects T , then T

rejects S as well; and S accepts T if T accepts S. We construct S recursively: in

each step we either find S or add one agent to the provisional set.

step 1. If for all j ≥ 2 the set {j} rejects {1} then S = {1} meets (20) and we

are done. Otherwise we pick the smallest label ℓ1 ≥ 2 accepting {1}, which implies

that {1} accepts {ℓ1} as well, and we form the provisional set S1 = {1, ℓ1}. If ℓ1 = n

we are done by choosing S1 so going into step 2 we have ℓ1 < n.

step k+1. The subset S has not yet been found therefore ℓk, the latest pick in

Sk, is smaller than n. By construction λℓka ≥ wSk−1 + wℓk = wSk so λia ≥ wSk for

all i ∈ Sk. Moreover all agents j < ℓk outside Sk have rejected some earlier Sk′ , so

they also reject the larger set Sk.

If all agents j > ℓk reject Sk as well we are done by choosing Sk. Otherwise

we pick the smallest label ℓk+1 after ℓk s.t. {ℓk+1} accepts Sk: this implies that Sk

accepts {ℓk+1} as well (recall λℓka ≥ λℓk+1a) so we set Sk+1 = Sk ∪ {ℓk+1} and we

have λia ≥ wSk+1 for all i ∈ Sk+1. We are done if ℓk+1 = n otherwise we go to the

next step. When this process stops we have found S̃ meeting (20).

We assign S̃ to post a, and consider the residual problem in Ã = A�{a},

Ñ = N�S̃ with total congestion W̃ = W − wS . For each j ∈ Ã such that λja > 0
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inequality (20) and equation (6) imply

λ
jÃ

> λjA − (wS + wj) = W − wS + ([[λj]]− 2)wj = W̃ + ([[λ̃j ]]− 1)wj

where in λ̃j we drop λja. For each j ∈ Ã such that λja = 0 inequality (??) has no

bite and equation (6) gives

λ
jÃ

= W + ([[λj ]]− 1)wj > W̃ + ([[λj ]]− 1)wj = W̃ + ([[λ̃j]]− 1)wj

The induction argument shows that in the reduced problem there is a top- 1
m−1 -

fair assignment of N�S to Ã.

The Maximality property: Fix A,W , an agent i∗ with weight wi∗ and an

arbitrary (W − wi∗)-prefix λi∗ ((6)). Then for any a s. t. λi∗a > wi∗ there is a

set of agents M not containing i∗ with weights wi s. t.
∑

i∈M wi = W −wi∗ and a

prefix λi ((6)) for each i ∈ M , s. t. in any top-n-fair assignment of the M ∪ {i∗}

problem agent i∗ is at a post a where the congestion is arbitrarily close to λi∗a.

Proof: We fix W , i∗, the (W − wi∗)-prefix λi∗ and a as in the statement. The

set M contains one agent ib for each post b s. t. λi∗b ≥ wi∗ , in particular one ia.

The size of M is [[λi∗ ]]. The weights are wib = λi∗b − wi∗ + ε if b ∈ M�a and

wia = λi∗a − wi∗ − ([[λi∗ ]]− 1)ε, where ε > 0 is small enough that wia > 0. Clearly

wi∗ +
∑

b∈M wib = W . Suppose now that each ib (including ia) is single-minded on

post b: λibb = W , λibx = 0 for x 6= b. Consider a top- 1
m
-fair assignment of M ∪{i∗}

to A: for each ib other than ia the inequality wib + wi∗ > λi∗b implies that ib is

alone at b, therefore i∗ share a with ia where the congestion λi∗a − ([[λi∗ ]] − 1)ε is

arbitrarily close to λi∗a. �

8.2 proof of Proposition 4

It mimicks that of Proposition 3. Given the assignment P = (Sx)x∈A for simplicity

we write the congestion wSx simplys as sx. Now agent i’s competitive demand at

the congestion profile s is

D(i; s) = {a|(a, sa ∨ wi) �i (x, sx ∨ wi) for all x ∈ A}, and P is competitive iff

a ∈ D(i; s) whenever i ∈ Sa.

Statement i) Unique competitive congestion. At first we do not assume in

(A,N,�, w) either semi-strict preferences or a crowded competitive assignment.
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Fix P = (Sx)x∈A and P ∗ = (S∗
x)x∈A both competitive and such that s 6= s∗.

Partition A as B∗ ∪ C ∪ B where B∗ = {a : sa < s∗a} , B = {a : s∗a < sa} ,

C = {a : s∗a = sa}, and B, B∗ are both non empty. We define in two equivalent

ways the set A∗ = {a ∈ B∗ : s∗a > wi for all i ∈ S∗
a} = {a ∈ B∗ : |S∗

a| ≥ 2}.

We claim first (as in the proof of Proposition 3) that if the demand D(i; s∗) of

some agent i intersects A∗, then D(i; s) ⊆ A∗. Suppose, to the contrary

a ∈ D(i; s∗) ∩ A∗ while b ∈ D(i; s) ∩ A�A∗. By definition of the demands and of

B∗ we have

(a, s∗a) �i (b, s
∗
b ∨ wi) and (b, sb ∨ wi) �i (a, sa ∨ wi) ≻i (a, s

∗
a)

where the last relation is strict because sa ∨ wi < s∗a. Note that we cannot replace

sb ∨ wi by sb because i may not be in Sb.

If b /∈ B∗ we have sb ∨wi ≥ s∗b so we add (b, s∗b ∨wi) �i (b, sb ∨wi) to the above

preferences to get a contradiction. If b ∈ B∗ then |S∗
b | = 1 because b /∈ A∗, therefore

sb < s∗b = wi so that (b, sb ∨ wi) = (b, s∗b ∨ wi) and we reach again a contradiction.

The claim is proved. As in the proof of Proposition 1 we check next that A∗ must

be empty: every i ∈ ∪a∈A∗S∗
a is s. t. D(i; s) ⊆ A∗ therefore

∑
a∈A∗ sa ≥

∑
a∈A∗ s∗a,

which contradicts s∗a > sa in B∗. So for every a ∈ B∗ we have S∗
a = {i}. Exchanging

the roles of P and P ∗ we see that Sb = {i} for all b ∈ B.

If at least one competitive assignment is crowded we take it as one of P,P ∗:

this contradicts the existence of B and B∗ and we are done. We continue the proof

when we only know that preferences are semi-strict. Writing T ∗ = ∪a∈B∗S∗
a and

T = ∪a∈B∗Sa we have wT ∗ =
∑

a∈B∗ s∗a >
∑

a∈B∗ sa = wT , implying that T ∗�T is

not empty: it contains some agent i ∈ S∗
a ∩ Sb where a ∈ B∗ and b ∈ C ∪ B. By

definition of the demands and of the partition of A we have

(a,wi) = (a, s∗a) �i (b, s
∗
b ∨ wi) and (b, sb) �i (a, sa ∨wi) = (a,wi)

where the last equality is from sa < s∗a = wi. If b ∈ B we have wi = sb > s∗b
therefore (b, s∗b ∨ wi) ≃i (b, sb); this indifference still holds if b ∈ C because in

that case s∗b = sb ≥ wi: we conclude that all preferences above are indifferences in

particular (a,wi) ≃i (b, sb) which contradicts the semi-strictness of preferences.

Statement i) Unique competitive welfare. Fix P = (Sx)x∈A and P ∗ = (S∗
x)x∈A

both competitive; we just proved s = s∗. An agent i is in some S∗
a ∩ Sb (where
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a = b is possible); by definition of competitiveness and the inequalities wi ≤ sa, sb

we have (a, sa) �i (b, sb) and (b, sb) �i (a, sa).

Statement ii) Assume P is competitive and Pareto dominated by Q. Pick any

agent i who is in Sa at P and in Tb at Q (a = b is possible). We have

(b, tb) �i (a, sa) �i (b, tb ∨ wi) (21)

therefore tb ∨ wi ≥ tb. Suppose sb < tb: taking into account wi ≤ tb, the inequality

sb ∨ wi ≥ tb implies wi = tb > sb, and the two preferences in (21) are indifferences,

in particular (b, wi) ≃i (a, sa) a contradiction of semi-strict preferences if a 6= b. If

a = b then (21) gives (b, tb) �i (b, sb) contradicting sb < tb.

We have shown sb ≥ tb everywhere on the support ofQ, so these are all equalities.

By replacing sb by tb in (21) we get (b, tb) ≃i (a, sa) a final contradiction.

Statement iii) Fix a competitive assignment P , a post a in its support and an

agent i ∈ Sa. We use the preferences (a, sa) �i (x,wSx∨wi) for all x 6= a to evaluate

the size of the set of allocations agent i may prefer to (a, sa): at post a the size is

sa−wi; at x such that wSx ≥ wi the size is wSx −wi; and 0 at x such that wSx ≤ wi.

So the total is at most W − wi. �

8.3 fractional competitiveness under weighted congestion

Switching to cardinal vNM utility functions we only partially emulate the results

of the previous section. Two of the key results are preserved: the existence of

a competitive fractional congestion profile and its qualified uniqueness (Lemma 3

below); the implementation of the competitive congestion by one or more lotteries

over deterministic assignments (Lemma 4 below). However we lose the rounding

and approximation results of Lemma 2 and Theorem 1.

The congestion profile σ = (σa)a∈A is in the simplex ∆R(A,W ) and each agent i

has a cardinal vNM utility function ui(a, z) over A×[wi,W ], continuous and strictly

increasing in z. As before if σa < wi the congestion price of post a to agent i is in

fact wi so we do not define ui(a, z) in the interval 0 ≤ z < wi. Given a problem

(A,N, u,w) agent i’s competitive demand at σ is

D(ui, σ) = argmaxx∈A ui(x, σx ∨ wi) and the fractional congestion profile σ ∈

∆R(A;W ) is competitive (Comp) iff σ ∈
∑

i∈N wi ·∆
R[D(ui, σ); 1].
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The (not necessarily unique) corresponding semi-stochastic matrix Π meets (18),

but (17) is replaced by

σa =
∑

i∈N

wiπia for all a ∈ A (22)

The same fixed point argument as in Lemma 1 proves that a solution of (22)

exists. To prove that it is unique we must strengthen the crowdedness property

of Definition 5 and prove a weaker uniqueness statement than in Proposition 4

(subsection 5.2).

Definition 8 The fractional congestion profile σ is f-crowded in problem (A,N, u,w)

iff for all a in its support (σa > 0) and each agent i demanding a ( a ∈ D(ui, σ))

we have σa > wi.

Lemma 3: In any problem (A,N,�, w) there is at most one f-crowded compet-

itive congestion profile.

Proof Let σ,σ∗ be two different f-crowded competitive congestion profiles, and

B∗ the non empty set of posts s. t. σ∗
a > σa. We claim that if D(ui, σ

∗) contains

a post a ∈ B∗ for some agent i then D(ui, σ) ⊆ B∗. If, to the contrary, D(ui, σ)

contains b outside B∗ we get the familiar inequalities ui(a, σ
∗
a) ≥ ui(b, σ

∗
b ∨wi) and

ui(b, σb) ≥ ui(a, σa ∨ wi) > ui(a, σ
∗
a) where the strict inequality is from σa < σ∗

a

and the f-crowding assumption. If b /∈ B∗ we have σ∗
b ∨ wi ≤ σb and derive a

contradiction from ui(b, σ
∗
b ∨ wi) ≥ ui(b, σb).

Pick now some semi-stochastic matrices Π and Π∗ meeting (22) for σ and σ∗

respectively, and use the property D(ui, σ
∗) ∩ B∗ 6= ∅ =⇒ D(ui, σ

∗) ⊆ B∗ to

compute for any i ∈ N :
∑

a∈A∗ π∗
ia > 0 =⇒

∑
a∈A∗ π∗

ia ≤
∑

a∈A∗ πia, which implies∑
a∈A∗ σ∗

a =
∑

i∈N wi(
∑

a∈A∗ π∗
ia) ≤

∑
i∈N wi(

∑
a∈A∗ π∗

ia) =
∑

a∈A∗ σa, the final

contradiction. �

The weighted congestion analog of Lemma 2 (section 6 for the anonymous con-

gestion case) is next.

Lemma 4 In any problem (A,N, u,w) we can implement any competitive con-

gestion profile σc by one or more list ({P k}Kk=1,L) of K deterministic assignments

P k together with a lottery L over [K], such that their expected congestion is σc and

they always assign the agents in their competitive demands:

i ∈ Sk
a =⇒ a ∈ D(ui, σ

c).

36



Proof Pick Π realising the congestion σc in (22) and apply the following version

of the Birkhoff theorem: every semi-stochastic matrix Π is the convex combination

of deterministic matrices (all entries are 0 or 1) of which the support is contained

in that of Π. �

A final example illlustrates the limits of this result.

Example 7: Two posts, three agents m = 2, n = 3 and W = 21. The weights,

(W − wi)-prefixes, and the two top-12 -fair assignments are

a b w

α 16 15 10

β 16 15 10

γ 9 13 1

a b

P1 α βγ

P2 β αγ

If the preferences are represented by the slack utilities (7) neither P1 or P2 is

competitive because both α and β prefer (a, 10) to (b, 11).

The fractional competitive congestion is σc = (11, 10) because

D(α, σc) = D(β, σc) = {a, b}. It can be implemented by two lotteries L1,L2 com-

bining P1,P2 with three not top-12 -fair assignments:

a b

P3 αγ β

P4 βγ α

P5 αβ γ

Specifically: L1 =
1
4P1 +

1
4P2 + 1

4P3 +
1
4P4, and L2 =

9
20P1 + 9

20P2 + 1
10P5, . The

former keeps congestion close to top-12 -fair, but violates this property half of the

time; the latter only violates it with probability 1
10 but then much more severely.
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