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Abstract

We study the existence of a monopoly equilibrium in the bilateral mixed ex-
change framework introduced by Busetto et al.(2019). Non existence examples in
which small traders have CES utility functions are provided and a link between
the existence of an equilibrium and the degree of substitutability of the goods is
explored. Therefore, the existence result is proved by introducing a sufficient as-
sumption on the utilities of the small traders, stressing that we need them to be
locally equivalent to linear utilities.
Journal of Economic Literature Classification Numbers: C62, D42, D51.

1 Introduction

In their paper, Busetto et al. (2019) established a foundation for monopoly equilibrium
in bilateral exchange. However, they left open the problems regarding the existence
and optimality of such equilibrium. In the literature of strategic market games, initi-
ated by Shapley and Shubik (1977), a lot of attention has been put on this topic. Busetto
et al. (2011) initiated a line of research about existence in mixed models extending, in
a way, Sahi and Yao (1989) existence result for finite economies in a Shapley windows
model.
The problem with the existence in oligopoly models, specially models following the
approach by Gabszewicz and Vial (1972), is that a discontinuity in the Walrasian price
correspondence may arise, leading to non-existence of equilibria. In order to solve
this problem, Busetto et al. (2011) used their assumption 4, that states that at least two
large traders have interior endowments and the indifference curves passing through
these points don’t touch the axis (the assumption replicates the one in Sahi and Yao
(1989)). Later on, they provided a refined version of the existence result in which they
required a strongly connected set of commodities (Busetto et al., 2017), but assuming
that small traders hold, in the aggregate, all the commodities present in the market. In
the context of bilateral markets, Bloch and Ghosal (1997) provided an existence result
in their model by assuming complementarity in the two goods for each agent.
However, the monopoly model presented in Busetto et al. (2019) fails to meet the as-
sumptions stated in Busetto et al. (2011) and Busetto et al. (2017), which were needed
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to prove an existence result. Therefore, it seems that additional assumptions are re-
quired in order to guarantee the existence of a monopoly equilibrium . Borrowing
from the well known partial equilibrium studies on monopoly, we introduce a suf-
ficient condition for the existence of a monopoly equilibrium based on the elasticity
notion, closer to the approach of Bloch and Ghosal (1997) and Bloch and Ferrer (2001).
In the latter, they consider a bilateral oligopoly in which every trader has a CES util-
ity function, showing in their Lemma 1 that ”the offers of traders on the two sides of
the market are strategic complements(substitutes) if and only if the goods are substi-
tutes (complements)” (p.85). We will initially consider that all small traders have an
identical CES function, showing how the monopoly equilibrium behaves in the three
limit cases for CES utility functions. We show that for a generic utility function form
for the monopolist, the monopoly equilibrium fails to exist when small traders have
Cobb-Douglas or Leontief utility function. In particular, the non-existence result for
Cobb-Douglas utilities stresses how the assumption of small traders holding in the ag-
gregate every good is crucial for some existence results, such as the one in Codognato
and Julien (2013).
As Batra (1972) states, ”we may conclude that a necessary condition for the monopoly
equilibrium to exist is that both price elasticities of demand are greater than unity”
(p.358). We need to even restrict this statement, claiming that the aggregate demand
only needs to be locally similar to an aggregate demand derived from an homoge-
neous atomless sector which is endowed with a linear utility function to guarantee the
existence of a monopoly equilibrium.
The outline of the existence proof follows the classical results in strategic market games.
However, this is one of the first existence results in which a specific price selection is
defined and for which an ε-equilibrium is proven to exist.
The model will follow from Busetto et al. (2019), i.e. a mixed version of a monopolistic
two-commodity exchange economy introduced by Shitovitz (1973) in his Example 1,
in which one commodity is held only by the monopolist, represented as an atom, and
the other is held only by small traders, represented by an atomless part.
The paper is organized as follows. In section 2, the mathematical model is introduced
followed by a reminder of the notion of a monopoly equilibrium, in section 3. In
sections 4 and 5, we compute the monopoly equilibrium when small traders have an
identical CES utility function: we first consider the limit situations for CES utilities (i.e.
Cobb-Douglas, Leontief and linear), followed by the general form, where we attempt
to retrieve the limit situation results from the general case. In section 6 the existence
theorem is proven, after introducing our sufficient condition. Finally, in section 7 we
draw some conclusions and we suggest some further lines of research.

2 Mathematical model

We consider a pure exchange economy with large traders, represented as atoms, and
small traders, represented by an atomless part. The space of traders is denoted by
the measure space (T, T , µ), where T is the set of traders, T is the σ-algebra of all
µ-measurable subsets of T, and µ is a real valued, non-negative, countably additive
measure defined on T . We assume that (T, T , µ) is finite, i.e., µ(T) < ∞. Let T0 denote
the atomless part of T. We assume that µ(T0) > 0 and T \ T0 = {a}, i.e., the measure
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space (T, T , µ) contains only one atom, the “monopolist.” A null set of traders is a
set of measure 0. Null sets of traders are systematically ignored throughout the paper.
Thus, a statement asserted for “each” trader in a certain set is to be understood to hold
for all such traders except possibly for a null set of traders. The word “integrable” is
to be understood in the sense of Lebesgue.
A commodity bundle is a point in R2

+. An assignment (of commodity bundles to
traders) is an integrable function x: T → R2

+. We are considering a bilateral exchange
economy, therefore with two commodities. We assume that the monopolist holds,
without loss of generality good one, while small traders hold the second good, i.e.

Assumption 1. w1(a) > 0 , w2(a) = 0 and w1(t) = 0, w2(t) > 0, for each t ∈ T0.

An allocation is an assignment x such that
∫

T x(t) dµ =
∫

T w(t) dµ. The preferences
of each trader t ∈ T are described by a utility function ut : R2

+ → R, satisfying the
following assumptions.

Assumption 2. ut : R2
+ → R is continuous, strongly monotone, and strictly quasi-concave,

for each t ∈ T.

Let B denote the Borel σ-algebra of R2
+. Moreover, let T ⊗B denote the σ-algebra

generated by the sets E× F such that E ∈ T and F ∈ B.

Assumption 3. u : T ×R2
+ → R, given by u(t, x) = ut(x), for each t ∈ T and for each

x ∈ R2
+, is T ⊗B-measurable.

In order to state our last assumption, we need a preliminary definition. We say that
commodities i, j stand in relation Q if there is a nonnull subset Ti of T0, such that ut(·)
is differentiable, additively separable, i.e., ut(x) = vi

t(xi) + vj
t(xj), for each x ∈ R2

+,

and dvj
t(0)

dxj
= +∞, for each t ∈ Ti.1 We can now introduce the last assumption.

Assumption 4. Commodities 1 and 2 stand in relation Q.

A price vector is a nonnull vector p ∈ R2
+. Moreover, we will denote by ∆ the unit sim-

plex, i.e. ∆ = {pR2
+ : p1 + p2 = 1}, and ∆ \ ∂∆ will denote the interior of ∆. Finally,

we will write P ∈ R+ to intend the corresponding relative price for each p ∈ ∆ \ ∂∆,
i.e. P = p1

p2
, for some (p1, p2) ∈ ∆ \ ∂∆.

Let X0 : T0 × R2
++ → P(R2

+) be a correspondence such that, for each t ∈ T0 and
for each p ∈ R2

++, X0(t, p) = argmax{u(x) : x ∈ R2
+ and px ≤ pw(t)}. For each

p ∈ R2
++, let

∫
T0

X0(t, p) dµ = {
∫

T0
x(t, p) dµ : x(·, p) is integrable and x(t, p) ∈

X0(t, p), for each t ∈ T0}. Since the correspondence X0(t, ·) is nonempty and single-
valued, by Assumption 2, let x0 : T0×R2

++ → R2
+ be the function such that X0(t, p) =

{x0(t, p)}, for each t ∈ T0 and for each p ∈ R2
++. A Walras equilibrium is a pair

(p, x), consisting of a price vector p and an allocation x, such that px(t) = pw(t) and
ut(x(t)) ≥ ut(y), for all y ∈ {x ∈ R2

+ : px = pw(t)}, for each t ∈ T. A Walras alloca-
tion is an allocation x for which there exists a price vector p such that the pair (p, x) is
a Walras equilibrium.

1In this definition, differentiability means continuous differentiability and is to be understood to in-
clude the case of infinite partial derivatives along the boundary of the consumption set (for a discussion
of this case, see, for instance, Kreps (2012), p. 58).
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3 Monopoly equilibrium

We now follow Codognato et al. (2019) in introducing their monopoly equilibrium
concept.
Let E(a) = {(eij) ∈ R4

+ : ∑2
j=1 eij ≤ wi(a), i = 1, 2} denote the strategy set of atom a.

We denote by e ∈ E(a) a strategy of atom a, where eij, i, j = 1, 2, represents the amount
of commodity i that atom a offers in exchange for commodity j. Moreover, we denote
by E the matrix corresponding to a strategy e ∈ E(a).

We then provide the following definitions.
Definition 1. A square matrix A is said to be triangular if aij = 0 whenever i > j or aij = 0
whenever i < j.
Definition 2. Given a strategy e ∈ E(a), a price vector p is said to be market clearing if

p ∈ R2
++,

∫
T0

x0j(t, p) dµ +
2

∑
i=1

eijµ(a)
pi

pj =
∫

T0

wj(t) dµ +
2

∑
i=1

ejiµ(a) (1)

, j = 1, 2.

The following proposition provides a necessary and sufficient condition for the exis-
tence of a market clearing price vector.
Proposition 1. Under Assumptions 1, 2, 3, and 4, given a strategy e ∈ E(a), there exists a
market clearing price vector p ∈ ∆ \ ∂∆ if and only if the matrix E is triangular.

Proof. Let e ∈ E(a) be a strategy. Suppose that there exists a market clearing price vec-
tor p ∈ ∆ \ ∂∆ and that the matrix E is not triangular. Then, it must be that e12 = 0. But
then, we have that

∫
T2 x01(t, p) dµ = 0 as µ(T2) > 0, by (1). Consider a trader τ ∈ T2.

We have that ∂uτ(x0(τ,p))
∂x1

= +∞ as 2 and 1 stand in the relation Q and ∂uτ(x0(τ,p))
∂x1

≤ λ p̂1,
by the necessary conditions of the Kuhn-Tucker theorem. Moreover, it must be that
x02(τ, p) = w2(τ) > 0 as uτ(·) is strongly monotone, by Assumption 2, and pw(τ) >

0. Then, ∂uτ(x0(τ,p))
∂x2

= λp2, by the necessary conditions of the Kuhn-Tucker theorem.

But then, ∂uτ(x̂(τ))
∂x2

= +∞ as λ = +∞, contradicting the assumption that uτ(·) is contin-
uously differentiable. Therefore, the matrix E must be triangular. Suppose now that E
is triangular. Then, it must be that e12 > 0. Let {pn} be a sequence of normalized price
vectors such that pn ∈ ∆ \ ∂∆, for each n = 1, 2, . . ., which converges to a normalized
price vector p̄ such that p̄1 = 0. Then, the sequence {

∫
T0

x01(t, pn) dµ} diverges to +∞,
by Proposition 4. But then, there exists an n0 such that

∫
T0

x01(t, pn) dµ > e12µ(a), for
each n ≥ n0. Therefore, we have that

∫
T0

x01(t, pn0) dµ > e12µ(a). Let q ∈ ∆ \ ∂∆

be a price vector such that
q2 ∫

T0
w2(t) dµ

q1 = e12µ(a). Consider first the case where∫
T0

x01(t, q) dµ = e12µ(a). Then, q is market clearing as it is market clearing for j = 1,
by Proposition 3. Consider now the case where

∫
T0

x01(t, q) dµ 6= e12µ(a). Then, it

must be that
∫

T0
x01(t, q) dµ < e12µ(a) as x01(t, q) ≤ q2w(t)

q1 , for each t ∈ T0. But then,

we have that
∫

T0
x01(t, q) dµ < e12µ(a) <

∫
T0

x01(t, pn0) dµ. Let O ⊂ ∂∆ be a compact
and convex set which contains pn0 and q. Then, the correspondence

∫
T0

X0(t, ·) dµ is
upper hemicontinuous on O, by the argument used in the proof of Property (ii) in
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Debreu (1982), p. 728. But then, the function {
∫

T0
x01(t, ·) dµ} is continuous on O as∫

T0
X0(t, p) dµ =

∫
T0

x0(t, p) dµ, for each p ∈ ∆ \ ∂∆, by Proposition 1. Therefore, there
is a price vector p∗ ∈ ∆ \ ∂∆ such that

∫
T0

x01(t, p∗) dµ = e12µ(a), by the intermediate
value theorem. Then, p∗ is market clearing as it is market clearing for j = 1, by Propo-
sition 3. Hence, given a strategy e ∈ E(a), there exists a market clearing price vector
p ∈ ∆ \ ∂∆ if and only if the matrix E is triangular. �

We denote by π(e) a correspondence which associates, with each strategy e ∈ E(a),
the set of price vectors p satisfying (1), if E is triangular, and is equal to {0}, otherwise.
A price selection p(e) is a function which associates, with each strategy selection e ∈
E(a), a price vector p ∈ π(e).

Given a strategy e ∈ E(a) and a price vector p, consider the assignment determined as
follows:

xj(a, e, p) = wj(a)−
2

∑
i=1

eji +
2

∑
i=1

eij
pi

pj , if p ∈ R2
++,

xj(a, e, p) = wj(a), otherwise,

j = 1, 2,

xj(t, p) = x0j(t, p), if p ∈ R2
++,

xj(t, p) = wj(t), otherwise,

j = 1, 2, for each t ∈ T0.

Given a price selection p(·) and a strategy e ∈ E(a), traders’ final holdings are ex-
pressed by the assignment x(a) = x(a, e, p(e)) and x(t) = x(t, p(e)), for each t ∈ T0.

The following proposition shows that traders’ final holdings are an allocation.
Proposition 2. Under Assumptions 1, 2, 3, and 4, given a price selection p(·) and a strategy
e ∈ E(a), the assignment x(a) = x(a, e, p(e)) and x(t) = x0(t, p(e)), for each t ∈ T0, is an
allocation.

Proof. Let a price selection p(·) and a strategy e ∈ E(a) be given. Suppose that E is
not triangular. Then, we have that x(a) = x(a, e, p(e)) = w(a) and x(t) = x(t, p(e)) =
w(t), for each t ∈ T0 as p(e) = 0. Suppose that E is triangular. Then, we have that∫

T
xj(t) dµ = (wj(a)−

2

∑
i=1

eji +
2

∑
i=1

eij
pi

pj )µ(a) +
∫

T0

x0j(t, p) dµ =
∫

T
wj(t) dµ,

j = 1, 2, as p(e) is market clearing. Hence, given a price selection p(·) and a strategy
e ∈ E(a), the assignment x(a) = x(a, e, p(e)) and x(t) = x0(t, p(e)), for each t ∈ T0, is
an allocation. �

We can now provide the definition of a monopoly equilibrium.
Definition 3. A strategy ẽ ∈ E(a) such that Ẽ is triangular is a monopoly equilibrium, with
respect to a price selection p(·), if

ua(x(a, ẽ, p(ẽ)) ≥ ua(x(a, e, p(e)),

for each e ∈ E(a).
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3.1 Monopoly equilibrium under invertible demand

We now show how the monopoly equilibrium can be computed when the demand
function

∫
T0

x01(t, p)dµ is invertible. This doesn’t change the theoretical background
of the definition just provided, it just aims to give support to the way in which the
problem will be tackled in the next sections
In this situation, we want to show that finding the optimal bid for the monopolist is
equivalent to obtaining the equilibrium bid as the demand computed at an optimal
price.
We recall propositions 7 and 8 in Codognato et al. (2019).
Proposition 3. Under Assumptions 1, 2, 3, and 4, the function

∫
T0

x01(t, ·) dµ is invertible if
and only, for each x ∈ R++, there is a unique p ∈ ∆ \ ∂∆ such that x =

∫
T0

x0i(t, p) dµ.
Proposition 4. Under Assumptions 1, 2, 3, and 4, if the function

∫
T0

x01(t, ·) dµ is invertible,
then there exists a unique price selection p̊(·).

Let p̊(·) denote the inverse of the function of
∫

T0
x01(t, p)dµ. We prove the following

proposition.
Proposition 5. Under Assumptions 1, 2, 3, and 4, if the function

∫
T0

x01(t, ·) dµ is invertible,
then a strategy ẽ ∈ E(a) such that Ẽ is triangular is a monopoly equilibrium if and only if there
exists a price p̃ ∈ ∆ \ ∂∆ such that ua(x(a, e( p̃), p̃) ≥ ua(x(a, e(p), p), for each p ∈ ∆ \ ∂∆.
Moreover, p̃ = p̊(ẽ).

Proof. Suppose that ẽ is a monopoly equilibrium. Let p̃ = p̊(ẽ). Clearly, p̃ is uniquely
defined, by Propositions 3 and 4, as

∫
T0

x01(t, ·) dµ is invertible. Suppose that there
exists p′ such that ua(x(a, e(p′), p′) ≥ ua(x(a, e( p̃), p̃). But then, letting e′ be the unique
strategy such that p′ = p̊(e′), ua(x(a, e′, p(e′)) ≥ ua(x(a, ẽ, ˚̃e), a contradiction sa ẽ
is a monopoly equilibrium. But then, ua(x(a, e( p̄), ( p̄)) ≥ ua(x(a, e(p), p), for each
p ∈ ∆ \ ∂∆.
Suppose now there exists a price p̃ ∈ ∆ \ ∂∆ such that ua(x(a, e( p̃), p̃) ≥ ua(x(a, e(p), p),
for each p ∈ ∆ \ ∂∆. Let ẽ = e( p̃). Suppose that there exists ē such that ua(x(a, ē, ( p̊(ē)) ≥
ua(x(a, ẽ, p(ẽ). But then, letting p̄ = p̊(ē) we have ua(x(a, e( p̄), p̄) ≥ ua(x(a, e( p̃), p̃), a
contradiction. Therefore ẽ = e( p̃) is a monopoly equilibrium.

�

The previous proposition tells that we can compute the monopoly equilibrium by first
computing the optimal price and then finding the optimal bid that would result from
the optimal price. Alternatively, proposition 5 states that if there is no optimal interior
price, then there is no equilibrium.

4 Existence: Limit results

We will try now to give an existence result when the atomless part of the economy has
an identical utility function, represented by a CES function in the form

u(x, t) = (axρ
1 + (1− a)xρ

2)
1
ρ .
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The elasticity coefficient ρ plays a fundamental role in the analysis, so we will try and
distinguish different situations depending on where the parameter lies.
First, we study what happens at the limit situations, i.e. when ρ → 0, ρ → −∞ and
ρ = 1.

4.1 Cobb-Douglas (ρ→ 0)

When the elasticity factor tends to 0, the utility function becomes a Cobb-Douglas, i.e.
u(x, t) = xa

1x1−a
2 .

In this situation, the demand function for good 1 becomes

x1(P) =
a
P

Then, the monopolist revenue in terms of good 2 is P(e)e = a. Therefore, a monopolist
equilibrium doesn’t exists as the induced utility function, i.e.

u(e, a, P(e)) =

{
(w1(a)− e, P(e)e) i f e ∈ (0, w1(a)]
w(a) i f e = 0

(2)

is not continuous at e = 0, as lime→0 P(e)e 6= 0.

4.2 Linear utility(ρ = 1)

If ρ = 1 (or tends to 1), then we approach the linear utility case, i.e. u(x, t) =
ax1 + (1− a)x2.
In this case, given the corner endowments, the first order conditions of the utility max-
imization problem directly give the value for the relative price, i.e. P = a

1−a . Therefore,
the monopolist becomes price taker as well, and the monopolist equilibrium coincides
with competitive equilibrium. As a consequence, the monopoly equilibrium exists.

4.3 Leontief (ρ→ −∞)

The final limit case is the one in which ρ → −∞. In this situation, the utility becomes
u(x, t) = min{ x1

a , x2
1−a}. The demand for good one becomes then

P(x1) =
a + ax1 − x1

ax1

In the same way as the Cobb Douglas, the induced utility function for the monopolist
is not continuous, as lime→0 P(e)e = 1 6= 0. Therefore, the monopoly equilibrium
doesn’t exist.
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4.4 The general case for CES utilities

Let’s now move to the general case. Every small trader solves the maximization prob-
lem

max u(x, t) = (axρ
1 + (1− a)xρ

2)
1
ρ s.t.Px1 + x2 = 1

which, for non degenerate cases, leads to the following demand function:

x1(P, t) =
1

P + (1−a
a P)

1
1−ρ

(3)

First, we can check under which values of ρ this demand function satisfies relation Q,
i.e. limx1→0

∂u(x,t)
∂x1

= +∞.

∂u(x, t)
∂x1

=
1
ρ

axρ−1
1 (axρ

1 + (1− a)xρ
2)

1
ρ

We can clearly see that the limit of the partial utility goes to infinity as x1 goes to 0
when ρ < 1.
Now, since the demand function can’t be generically inverted to obtain a demand
function in the form P(x1), we will consider the monopolist problem from a price
setting perspective. We can observe that when limP→+∞ x1(P, t) = 0.

Remind that the CES utility function have the property that the elasticity is constant,

i.e. −
∂

dx1
dx2
dp

P
x1
x2

= 1
1−ρ = φ. So we can rewrite all of these relations in terms of φ.

The monopolist observe the small traders demand function and solves the following
problem:

max
P

u(x, a)

s.t. Px1 + x2 = P
1− x1(a) = x1(P, t)

First, we can rewrite the first constraint as x2 = (1− x1(a))P = x1(P, t)P.
It may be worth noticing that prices are bounded below. This is implicitly stated in the
second constraint, as prices must be such that x1(P, t) ≤ 1, and therefore

1
P + (1−a

a P)φ
≤ 1.

Now, we can plug the constraints into the utility function, and the problem reduces to

max
P

u(x1(a, P), x2(a, P)) = u(1− x1(P, t), Px1(P, t)) (4)

8



4.5 Inelastic demand and non existence of monopoly equilibrium

Before going into the analysis of the first order conditions for this problem, it is worth
noticing that Px1(P, t) may not go to 0 when the relative price diverge, i.e. when the
bid of the monopolist goes to 0. In particular, when 0 < φ < 1, limP→0 x1(P, t) = 1.
This created the discontinuity we encountered in the previous examples. We can there-
fore state the following proposition.

Proposition 6. If u(x, t) is a CES with elasticity parameter with 0 < φ < 1, for each T ∈ T0,
then there is no monopoly equilibrium.

Proof. Monopolist final allocation will be in the form xa(e, P(e)) = (1− e(P), Pe(P)).
Moreover, Pe(P) = Px1(P, t) = P

P+( 1−a
a P)φ . This expression goes to 1 when P→ +∞, as

we are assuming 0 < φ < 1. But then, limP→+∞ xa(e, P(e)) = (1, 1), as e(P) = x1(P, t)
and x1(P, t)→ 0 when P→ +∞. Moreover, (1, 1) �a xa(e, P(e)), for each P ∈ R+ (i.e.
p ∈ ∆ \ ∂∆). However, at the limit, i.e. when e = 0, xa(0) = wa = (1, 0). Therefore,
there is no optimal strategy for the monopolist, in the sense that the it is always optimal
to increase the price (reduce the bid). Hence, there is no monopoly equilibrium �

4.6 Elastic demand

We can now focus on the general solution of the maximization problem stated in 4.
The first order condition is

∂u
∂P

= − ∂u(x, a)
∂x1(P, a)

∂x1(P, t)
∂P

+
∂u(x, a)
∂x2(P, a)

(x1(P, t) + P
dx1

dP
)

Expanding the constant elasticity relation, we can write

dx1

dP
= −φx1(1− Px1)

P
− x2

1

Therefore, rearranging the terms, we obtain

∂u
∂P

= − ∂u(x, a)
∂x1(P, a)

(
dx1(P, t)

dP
) +

∂u(x, a)
∂x2(P, a)

d[Px1(P, t)]
dP

= − ∂u(x, a)
∂x1(P, a)

(−φx1(1− Px1)

P
− x2

1) +
∂u(x, a)
∂x2(P, a)

[x1(P, t)2(1− φ)(
1− a

a
P)φ]

= x1(P, t)2[
∂u(x, a)
∂x1(P, a)

(
φ

P
(

1− a
a

P)φ + 1) +
∂u(x, a)
∂x2(P, a)

(1− φ)(
1− a

a
P)φ] (5)

Analyzing this expression, we can already find an interesting result, that is that the
marginal change utility for the monopolist for a price change is decreasing in the elas-
ticity parameter. We prove this result in the following proposition.
Proposition 7. If φ1 ≥ φ2 > 1, then ∂u

∂P (φ1) ≤ ∂u
∂P (φ2)

2.

2With a little abuse of notation, we denote by ∂u
∂P (φ1) the derivative of the derivative of the induced

utility function for the monopolist when she faces an homogeneous atomless sector in which all traders
have a CES utility function with elasticity parameter φ1
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Proof. Suppose φ1 ≥ φ2 > 1. Then, it is immediate to see that x1(φ1, P, t) ≤ x1(φ2, P, t),
for each P, from the expression of the demand function (see 3). But then, x1(φ1, P, a) ≥
x1(φ2, P, a) and x2(φ1, P, a) ≤ x1(φ2, P, a), for each P, as x(a, P) = (1− x(P, t); Px1(P, t)).
Therefore, ∂u(x,a)

∂x1(P,a) |x1(P,a)=x1(φ1,P,a) ≤
∂u(x,a)

∂x1(P,a) |x1(P,a)=x1(φ2,P,a) and ∂u(x,a)
∂x2(P,a) |x2(P,a)=x2(φ1,P,a) ≥

∂u(x,a)
∂x2(P,a) |x2(P,a)=x2(φ2,P,a), as u is strictly concave, by Assumption 2. Hence, by incor-

porating the previous disequations for equation 5, if φ1 ≥ φ2 > 1, then ∂u
∂P (φ1) ≤

∂u
∂P (φ2). �

To derive the result for linear utilities, we will show in the following proposition that
when the elasticity parameter φ goes to infinity, then the optimal monopoly price will
equate the walrasian/paretian price.

Proposition 8. Consider a pure exchange economy such that each trader t ∈ T0 has a CES
utility function with parameter φ, then when φ→ +∞ the monopoly equilibrium will coincide
with the walrasian equilibrium.

Proof. We consider again the first order condition, expressed in 5, and we will put it to
be greater or equal to 0, i.e.

x1(P, t)2[
∂u(x, a)
∂x1(P, a)

(
φ

P
(

1− a
a

P)φ + 1) +
∂u(x, a)
∂x2(P, a)

(1− φ)(
1− a

a
P)φ] ≥ 0

Rearranging the terms, we get that

−
∂u(x,a)

∂x1(P,a)
∂u(x,a)

∂x2(P,a)

≤ P
(1− φ)(1−a

a P)φ

φ(1−a
a P)φ + P

(6)

In particular, we may notice that the right hand side of the previous disequation goes
to P as φ→ +∞. If we rewrite the previous expression as an equation, then we obtain

the well known relation for a walrasian economy, i.e.
∂u(x,a)

∂x1(P,a)
∂u(x,a)

∂x2(P,a)

= P; therefore proving the

fact that when the elasticity goes to infinity, i.e. when the CES utilities tend to linear
form utility, the monopoly equilibrium will converge to the walrasian equilibrium. �

4.7 Example with heterogeneous atomless sector

We end this section with an instructive example that extends Proposition 6. We show
that even when only a subset of the small traders has an inelastic CES utility function,
we end up with a negative result.
Example 1. Consider the following specification of the exchange economy satisfying Assump-
tions 1, 2, 3 and 4. T0 = [0, 1], T1 = 2, T0 is taken with Lebesgue measure and µ(2) = 1,
wt = (0, 1) for each t ∈ T0, ut(x) = x1x2 for each t ∈ [0, 1

10 ], ut(x1, x2) =
√

x1 + x2 for
each t ∈ [ 1

10 , 1], w2 = (1, 0), u2 = 20x1 +
1

10 lnx2. Then, there is no monopoly equilibrium.
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Proof. The demand function for good 1 for each t ∈ [0, 1
10) is given by x1(t, P) = 1

2P ,
while the the demand function for good 1 for each t ∈ [ 1

10 , 1] is given by x1(t, P) = 1
4P2 .

Therefore, the aggregate demand function for good 1 is given by

∫
T0

x1(t, p)dµ =
∫ 1

10

0
x1(t, P)dµ +

∫ 1

1
10

x1(t, P)dµ =
1
10

1
2P

+
9
10

1
4P2 =

2P + 9
40P2 .

Then, p(e) = p(
∫

T0
x1(t, p)dµ) = 1+

√
1+360e
40e . But then, the induced utility for the mo-

nopolist u2(x1(e, P), x2(e, P) = (1− e, p(e)e) = 20(1− e) + 1
10 ln 1+

√
1+360e
40 . Therefore,

the first order condition for the maximization of the utility of the monopolist are

du2(e))
de

= −20 +
18

360e + 1 +
√

1 + 360e
.

This expression is clearly negative for each value of e ∈ (0, 1]. Moreover, lime→0(x1(e), x2(e)) 6=
w2 as lime→0 x2(e) = lime→0 P(e)e = 1

20 . Hence, there is no monopoly equilibrium. �

4.8 Discussion

In this paper, we tried to link results about existence and behaviour of a monopoly
equilibrium with the elasticity of substitution between the two goods.
In order to do that, we consider a pure exchange economy in which all traders in the
atomless part has an identical CES function, that guarantees that the aggregate de-
mand function will preserve the constant elasticity property.
The first proposition is a counterpart in our framework of the result in monopoly the-
ory, stating that ”[...] the profit maximizing monopolist produces an output where the
marginal revenue equals positive marginal cost, and the former is positive only if the
elasticity of demand exceeds unity” (Batra 1971, pag.358). In our context, we state that
the elasticity of substitution must exceed unity in order for the monopoly equilibrium
to exist. In particular, the non existence is derived from the fact that when the elastic-
ity of substitution is sufficiently low, the monopolist can exploit indefinitely the small
traders, but at the limit he’s left with her own endowment, which is strictly worse that
what she could have got if she kept on decreasing her offer (increasing the price).

In the two limit situations, i.e. Cobb-Douglas and Leontief utility functions, the in-
terpretation appears even ”cleaner”. For Leontief utility function, the two goods are
perfect complements, therefore the monopolist can attain his maximum market power
as small traders will always be incentivized to send to the market almost their whole
stock of good in order to exchange it for a small quantity from the good the monopolist
owns.
In the Cobb-Douglas case, we can see that the small traders demand for the good they
own is completely inelastic. This means that the monopolist will always get in return a
fixed amount of the good the small traders own, no matter what his bid is. Therefore,
the monopolist here is always incentivized to reduce his bid.

To conclude our analysis of the first proposition, we will add two details to it. First,
the result states the non existence of a monopoly equilibrium in the sense that there
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doesn’t exist an optimal strategy for the monopolist, not that the only possible equi-
librium is autarchy. This is mostly due to the fact that the low elasticity of substitu-
tion makes the induced payoff of the monopoly discontinuous, and therefore we can’t
have a solution to the maximization problem. The important feature that drives the
discontinuity is the model setup, in particular the fact that we have identical corner
endowment for each small traders, where none of them holds any amount of the good
owned by the monopolist.
The second important fact is that this proposition doesn’t require any additional as-
sumption for the behaviour of monopolist utility, as it holds for a generic utility func-
tion for the monopolist.

The second proposition can also be considered as a generalization for the standard
result in partial equilibrium, that is the well known mark-up formula

MR(1 +
1
φ
) = MC.

Clearly, if the elasticity of the demand goes to infinity, than we get the standard com-
petitive result. Our proposition states the same result in a context of bilateral exchange.
Here the interpretation is that the closer the goods to the situation of perfect substi-
tutes, formally linear utility form, the lesser market power the monopolist has. In the
limit, when goods are perfect substitutes, the relative price of the goods is fixed by the
small traders via their demand (as it is infinitely elastic) and therefore the monopolist
has no market power in manipulation the price, which in turn brings the equilibrium
to be equal to the walrasian one.
Finally, it is worth noticing that in this situation the existence of a non autarchic equi-
librium is established as we know from standard results in general equilibrium theory
that guarantees the existence of a walrasian equilibrium in this framework.

5 Existence of a monopoly equilibrium

The previous section showed that the monopoly equilibrium may fail to exist in the
context of an inelastic demand. Therefore, we’ll provide a proof for the existence of a
monopoly equilibrium which takes into account this feature.
Before introducing our new assumption, we need to introduce the following defini-
tion.
Definition 4. Let u1 and u2 be two utility function satisfying Assumption 2. We say that the
two utilities are locally equivalent at x̄ ∈ R2

+ if there exists a sequence of prices Pn ∈ R+ for
which the corresponding demands x1(Pn) coincide and both converge to x̄.

Finally, in order to take into account the elasticity constraint, we introduce the follow-
ing assumption.
Assumption 5. There exist α ∈ (0, 1) such that ut is locally equivalent to a linear utility
function with parameter α at wt = (0, 1), for each t ∈ T0,.

This assumption requires the utility functions of each small traders to be locally equiv-
alent to a linear utility function.
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However, the first part of the proof will be given from a general perspective, as it holds
for a more general framework3.

Theorem 1. Under Assumptions 1, 2, 3, 5 there exists a monopoly equilibrium.

Proof. From now on, since the demand functions are homogeneous of degree 0, in-
stead of considering non negative price vectors, we will consider price vectors pε ∈
∆ = {p ∈ R2

+ : p1 + p2 = 1}. We will denote the set of strictly positive prices as
∆ \ ∂∆.
We show now a proposition about the aggregate demand function

∫
T x01(t, pε)dµ(t) :

∆ \ ∂∆→ R+.

Lemma 1. The aggregate demand function
∫

T x01(t, pε)dµ(t) : ∆ \ ∂∆ → R+ is an onto
continuous function.

Proof. The correspondence
∫

T0
X0(t, ·) dµ is upper hemicontinuous, by the argument

used in the proof of Property (ii) in Debreu (1982), p. 728. But then, the function
{
∫

T0
x01(t, ·) dµ} is continuous as

∫
T0

X0(t, pε) dµ =
∫

T0
x0(t, pε) dµ, for each pε ∈ ∆ \

∂∆, by Proposition 1 in the other paper.
To prove that

∫
T x01(t, pε)dµ(t) : ∆ \ ∂∆ → R+ is onto, we need to show that for each

e ∈ E(a) there exists a market clearing price pε ∈ ∆ \ ∂∆. First, let ε > 0. Then, let
e ≥ 0. Let {pn} be a sequence of normalized price vectors such that pn ∈ ∆ \ ∂∆, for
each n = 1, 2, . . ., which converges to a normalized price vector p̄ such that p̄1 = 0.
Then, the sequence {

∫
T0

x01(t, pn) dµ} diverges to +∞, by Proposition 4 in the other
paper. But then, there exists an n0 such that

∫
T0

x01(t, pn) dµ > e + ε, for each n ≥ n0.
Therefore, we have that

∫
T0

x01(t, pn0) dµ > e + ε. Let q ∈ ∆ \ ∂∆ be a price vector

such that
q2 ∫

T0
w2(t) dµ

q1 = e + ε. Consider first the case where
∫

T0
x01(t, q) dµ = e + ε.

Then, q is market clearing as it is market clearing as it satisfies 1. Consider now the
case where

∫
T0

x01(t, q) dµ 6= e + ε. Then, it must be that
∫

T0
x01(t, q) dµ < e + ε as

x01(t, q) ≤ q2w(t)
q1 , for each t ∈ T0. But then, we have that

∫
T0

x01(t, q) dµ < e + ε <∫
T0

x01(t, pn0
ε ) dµ. Let O ⊂ ∆ \ ∂∆ be a compact and convex set which contains pn0

ε and
q. . Therefore, there is a price vector p∗ε ∈ ∆ \ ∂∆ such that

∫
T0

x01(t, p∗) dµ = e + ε,
by the intermediate value theorem. . Hence, given a strategy e ∈ E(a), there exists a
market clearing price vector p ∈ ∆ \ ∂∆. �

We can now start giving the existence result in the perturbed game we just defined.
Given ε > 0, define a map from market clearing price vectors into monopolist actions,
which is a restriction of the aggregate demand function, namely e̊ : Aε ⊆ ∆ \ ∂∆ →
(0, w1(a)], with Aε = {pε ∈ ∆ \ ∂∆ : ε ≤

∫
T0

x01(t, pε)dµ(t) ≤ w1(a) + ε}.

Lemma 2. The mapping e̊(pε) : Aε ⊆ ∆ \ ∂∆ → (0, w1(a)] is a continuous function and a
closed mapping.

3For example, the first part of the proof would hold even replacing Assumption 5 back with As-
sumption 4
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Proof. e̊(pε) is a function as it is a restriction of the aggregate demand function
∫

T0
x01(t, pε)dµ(t) :

∆ \ ∂∆ → R+. The function is also continuous as restrictions preserves continuity.
Moreover, the set Aε is closed as it is a preimage of a closed set via a continuous func-
tion. Moreover, Aε is bounded as Aε ⊂ ∆, which is a compact set. Therefore, Aε is
compact, as it is closed and bounded. Hence, e̊ε(p) is a closed map, by Theorem 4.95
in Lee, John M. (2011) �

We can give an initial characterization of the (restricted) inverse correspondence πε(e) :
(0, w1(a)] � B ⊆ Aε.

Lemma 3. The correspondence πε(e) is non-empty, compact valued and upper hemicontinu-
ous.

Proof. e̊ε(p) has a closed graph, by Lemma 2. Then, πε(e) is an upper hemicontinuous
correspondence, by Theorem 17.7 in Aliprantis and Border (2006). Moreover, πε(e)
is non-empty, by Lemma 1. Following the previous arguments, πε(e) is bounded as
πε(e) ∈ Aε ⊆ ∆, and it is closed as it is the preimage of {e + ε} via the aggregate
demand function (which is continuous). Hence, πε(e) is a compact valued, upper
hemicontinuous correspondence. �

Let now p̃ε(e) = argmaxpε∈πε(e) p1
ε(e). This is a well defined selection as πε(e) is

compact valued, by Lemma 3.

We now give a lemma that states an additional property for this selection.

Lemma 4. The price selection p(e) = maxpπ(e), expressed in terms of relative prices, i.e.
P(e), is decreasing for each e > 0.

Proof. Let e′ > e′′ and suppose P(e′) ≥ P(e′′). Consider a restriction of the aggregate
demand function

∫
T0

x01(t, p)dµ(t) by restrincting the domain of this function to the
set [P(e′),+∞). Moreover, we know that the aggregate function (and therefore the
restriction) is continuous and limP→+∞

∫
T0

x01(t, p)dµ(t) = 0. But then, there exists a
P′ ≥ P(e′′) such that

∫
T0

x01(t, p′)dµ(t) = e′′, by the Intermediate Value Theorem. But

then, there exists p′ ∈ π(e′′) with P′ = p
′1

p′2
and P′ > P(e′′), a contraddiction. Therefore,

P(e′′) > P(e′).
Hence, the price selection p(e) = maxpπ(e) is decreasing in e. �

We can now define, in a similar way, ua(x(a, e, p̃ε(e)) = maxp∈πε(e) ua(x(a, e, pε(e)).
We can now provide a characterization for this induced payoff function.

Lemma 5. The induced payoff function, given by ua(x(a, e, p̃ε(e)) is upper semicontinuous.

Proof. The correspondence πε(e) is compact valued and upper hemicontinuous, by
Lemma 3. The utility function ua(x(a, e, p)) is continuous by Assumption 2. Hence,
ua(x(a, e, p̃ε(e)) is upper semicontinuous by Lemma 17.30 in Aliprantis and Border
(2006). �
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Finally, we apply Luenberger’s version of Weierstrass theorem to finally obtain the ex-
istence result for the perturbed version of the economy.

Lemma 6. An ε-monopoly equilibrium exists.

Proof. From the definition of monopoly equilibrium, we can see that a monopoly
equilibrium action ẽε is such that ẽε ∈ argmaxe∈Eu(x(e, pε(e), a), with respect to a
price selection pε(·). Let this price selection be p̃ε(e) = argmaxpε∈πε(e) p1

ε(e). But
then, ua(x(a, e, p̃ε(e)) is upper semicontinuous, by Lemma 5. Therefore, this function
achieves a maximum in its domain, i.e. [0, w1(a)], by Theorem 1 in (Luenberger, 1970,
p. 40). Hence, an ε-monopoly equilibrium exists. �

Consider a sequence {εn} with limn→∞ εn = 0. For each {εn}, there exists an optimal
P̃n

ε , by Lemma 6.
P̃n

ε is bounded above for each ε, as the set of feasible prices is bounded above by
Pn

ε (0) = {P ∈ R+ :
∫

T0
x1(P, t)dµ = ε}. However, limn→∞ Pn

ε (0) = +∞, as limn→∞ εn =

0. Moreover, when {εn} → 0, the final allocation for the small traders is x1(Pn
ε , t) =

(x(Pn
ε , t), x2(Pn

ε , t)), which converges to x(Pn
ε , t) = (0, 1) when Pn

ε → (1, 0). But
then, there exists a subsequence {Pnk

ε } for which the demand x1(Pnk
ε , t) will coin-

cide with the demand function of a linear utility function, by Assumption 5. There-
fore, there exists n̄k, such that Pn̄k

ε < α
1−α ≤ P ¯nk+1

ε , as the sequence diverges and
α ∈ (0, 1). But then,

∫
T0

x1(Pnk
ε )dµ = 0 for each nk ≥ n̄k. Then, xa(e, Pnk

ε (enk)) =

(w1(a)− enk , Pnk
ε (enk)enk) = (w1(a)− enk , 0), for each nk ≥ n̄k. Therefore, the optimal

bid will always be either 0 or greater then en̄k . Assuming that the endowment for the
monopolist is not pareto efficient, we must have that that the optimal bid for the mo-
nopolist is bounded below by en̄k . But then, there exists a subsubsequence ẽnkm

that
converges to a point ẽ ∈ [en̄k , w1(a). This completes the proof.
Hence, a monopoly equilibrium exists.

�

6 Conclusion

In this paper, we studied the problem of the existence of a monopoly equilibrium, link-
ing it with the elasticity of substitution of small traders utilities.
We gave an existence result for the framework introduced in Busetto et al. (2019), in-
troducing a sufficient local condition for the utilities in the small trader sector that
guarantees the existence of such an equilibrium. We showed that there is a link be-
tween the elasticity of substitution of the aggregate demand and the existence of an
equilibrium by considering a situation in which the small traders have a generic CES
utility function. Therefore, we introduced a sufficient condition that guarantees the
existence of equilibrium, taking into account this feature.
We extend the well known result in partial equilibrium that monopolist will produce
in the inelastic portion of the demand curve, by requiring that the small traders have
preference which are locally equivalent to linear utilities. This last assumption is very
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specific and quite demanding, but it also arises naturally after we considered the pre-
vious examples.
A more general consideration of the existence problem of a monopoly equilibrium and
its relation to substitutability/complementarity notions, expanding on the arguments
by Bloch and Ferrer (2001) and Bloch and Ghosal (1997), is left for further work. In
particular, relaxing Assumption 5 by allowing utilities to be locally equivalent to a
generic CES would seem the most direct extension to our proof.
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