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1 Introduction

Two strands of the exchange rate literature offer explanations of anomalies in foreign ex-

change markets that are at odds with one another. One strand, which we refer to as the

stochastic discount factor (SDF) approach, uses frictionless common-information environ-

ments to explain the behaviour of exchange rates. In this framework, whether the underlying

model is a reduced-form model or a structural representative agent model, the returns to

various currency-based investment strategies are interpreted as compensation for risk.1 The

other strand uses a market microstructure framework in which agents have heterogeneous

information. In these models customer order flow is a key determinant of bilateral exchange

rate changes and, therefore, currency excess returns.2 In this paper we explore whether

the empirical facts are, in fact, consistent with both the reduced-form SDF approach and

the market microstructure approach. We argue that, in fact, empirical evidence that might

normally be interpreted as favourable to the SDF approach is also compatible with the

order-flow driven view of the world.

To give an example, a commonly studied anomaly in foreign exchange markets is the

profitability of the carry trade, which is a zero-cost investment strategy in which an investor

borrows short term funds in low interest rate currencies and lends equivalent amounts short

term in high interest rate currencies. According to the uncovered interest-rate parity (UIP)

condition, this investment strategy should have zero expected returns, both conditionally

and unconditionally. However, it is well-established that carry trades have been profitable

in historical data, and this is considered to be a puzzle akin to the equity premium puzzle

in stock markets.3

According to the SDF approach, any asset that bears a positive mean excess return is

risky, in the sense that the returns to the asset are systematically correlated with some mea-

sure of risk. According to this view, carry trades are profitable because holding long positions

in high interest rate currencies financed by short positions in low interest rate currencies is

risky. Finding measures of risk that are systematically correlated with carry trade returns

has, however, not been easy. Lustig and Verdelhan (2007) argue that a consumption-based

1A non-exhaustive list includes Lustig and Verdelhan (2006), Lustig and Verdelhan (2007), Verdelhan
(2010), Colacito and Croce (2011), Lustig and Verdelhan (2012), Lustig et al. (2014).

2See, among others, Evans and Lyons (2002), Cerrato et al. (2011), Evans (2011), Evans and Rime (2012),
Cerrato et al. (2015), Breedon et al. (2016), and Menkhoff et al. (2016).

3See, for example, Fama (1984a), Engel (1996), Burnside (2012), Burnside (2014), and Engel (2016).
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model can price the cross-section of currency returns as well as explain the returns to the

carry trade. Burnside (2011) argues that consumption-based risk factors are, however, un-

related to currency returns and that their results are explained by the properties of weakly

identified estimators. Burnside et al. (2011), Menkhoff et al. (2012a) and Burnside (2012)

have argued that standard measures of risk used to price stock returns do not appear to

be successful in pricing currency returns. Lustig et al. (2011) show that their carry-trade

portfolio, HMLFX, is useful in pricing the cross-section of currency returns but they do not

explain the carry-trade portfolio, itself, with some other underlying factor. Menkhoff et al.

(2012a) price the cross-section of currency returns with a global currency volatility factor.

They find that high interest rate currencies have a tendency to depreciate when volatility

in currency markets increases, while low interest rate currencies provide a hedge. But their

factor is only weakly linked to a particular economic theory.

In this paper we let the microstructure literature guide the construction of a model that

explains carry trade returns using the SDF approach. In this literature, the emphasis is

on how dispersed information is aggregated within the market and translated into price

changes.4 The simplest models are linear and relate exchange rate changes to news about

fundamentals that are common knowledge and changes that are driven by net order flow in

the foreign exchange market. For a particular currency, net order flow is the value of buy

orders net of sell orders, faced by foreign exchange dealers. Order flow, itself, is driven by

the common and dispersed information received within the customer market (i.e. the agents

in the market other than dealers). The literature emphasizes the importance the market’s

structure, with dealers interacting directly with customers but also with each other through

an inter-dealer market. This is usually captured, in models, by having sequential market

stages where customers arrive first, and the inter-dealer market clears later. What the models

show is that in market equilibrium, the change in the spot rate of a currency’s value over

some interval is related linearly to the order flow that dealers face over that interval, and

this is the basis on which these models have been evaluated empirically.

We use order-flow data to construct risk factors that are designed to capture notions

of currency crash risk. In particular we measure buying and selling pressure in the foreign

exchange market that is relevant to particular currency investment strategies, with the em-

phasis being on the carry trade. Our main risk factor, which we refer to as a carry-trade

4See Evans (2011) for a comprehensive review.
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order-flow factor, sums the value of buy orders for high interest rate currencies and the value

of sell orders for low interest rate currencies, having normalized the measures of order flow

to the scale of the market for each currency. When carry trade activity is strong, we expect

the value of this factor to increase. When carry trade activity is weaker we expect it to have

a lower value. Most importantly, if carry-trade investors dominate the market and suddenly

reverse their positions, we might expect our factor to turn negative because there is net

selling pressure on the high interest rate currencies. We find that this factor is strongly

associated with the returns to a variety of carry trade portfolios, and is very successful in

pricing the cross-section of currency returns. We find that a similar factor performs well in

pricing currency momentum portfolios.

Our paper is related to two branches of the empirical literature. The microstructure

literature focuses on bilateral exchange rate behaviour. Lyons et al. (2001) and Evans and

Lyons (2002) show that order flow maps a significant part of customers’ private information

into price discovery and it can explain a large part of exchange rate variation as well as, by

extension, currency excess returns. Evans and Lyons (2009) argue that order flow conveys

information about future macroeconomic conditions and that this information filters into the

exchange rate. They show that order-flow data have significant predictive power for future

macroeconomic variables.

Another branch of the literature emphasizes currency crashes. Galati et al. (2007) find

that excess returns to carry trades tend to reverse abruptly under market stress. They

provide evidence from international banking data that currency flows are associated with

these reversals. Brunnermeier et al. (2008) propose a novel theoretical model which links

customer order flow to currency excess returns via the risk premium. They emphasize the

role of risk averse market dealers who use the information in order flow to adjust the risk

premium when they quote the spot rate. In their model, investors who engage in carry trades

build their position gradually but liquidate their positions quickly, causing a currency crash.

As market dealers predict the future unwind, they increase the risk premium associated

with carry trade portfolios. Differently from Brunnermeier et al. (2008), in this paper we

generalize that idea by extending it to the cross-section of currency returns and we provide

a natural empirical measure of carry-trading pressure in the foreign exchange market. In

related work, Brunnermeier and Pedersen (2008) propose a liquidity spiral model in which,

as currencies crash, losses to carry trade positions force investors to further liquidate their
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positions causing liquidity to dry out quickly. Inspired by the volatility factor of Menkhoff

et al. (2012a), Rafferty (2012) constructs a global currency skewness factor, by measuring

intramonth daily skewness, signed by the interest differential versus the US dollar, and

averaged across a basket of currencies. This factor can be thought of as a reduced-form

measure of crash risk. His factor prices both carry trade and momentum portfolios. Our

factor is somewhat related, but measures signed order flow rather than currency movements

themselves.

Another important feature of our analysis, is that we that order flow behaves systemati-

cally differently across distinct segments on the customer side of the market. In particular,

we find that aggregate order flow is related to currency returns in the same way that order

flow for financial customers (hedge funds and asset managers) is. On the other hand, we

tend to see an inverse relationship for the order flow of non-financial customers (private

and corporate customers). When the order flow of financial customers leans more towards

taking carry trade positions, carry trade portfolios tend to do well. But we see the opposite

pattern for non-financial customers. This suggests that order flow conveys different infor-

mation to dealers depending on its origin within the customer base. It also suggests that a

certain degree of risk sharing happens within the customer base, not just between customers

and dealers and within the inter-dealer market. In this respect, our paper is also related to

Menkhoff et al. (2016) who, using a large data-set of customer order flow from a large foreign

exchange dealer, show that order flow carries important information which can be used for

predicting currency returns. They also show that financial flows contain information which

have a long-term impact on currency returns and that financial and non-financial customers

trade in opposite directions and therefore they provide evidence of risk sharing taking place

in the customer market. Our paper, on the other hand, focuses mainly on how order flow is

related to the carry trade rather than exchange rate predictability.

In Section 2 we describe the currency portfolios that we analyze in our empirical work.

These include standard interest-rate sorted portfolios used in the extant literature, carry-

trade portfolios, and a set of portfolios sorted on the basis of order flow. In Section 3 we

introduce our order-flow related pricing factors. Section 4 contains the bulk of our empirical

work, which is based on sample of weekly data from 2001 to 2012. We study the behavior

of various currency portfolios in this period, as well as the performance of standard risk

factors used in the prior literature. We then show cross-sectional asset pricing results for
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our order-flow based pricing factor. In Section 5 we explore a brief extension to momentum

portfolios. Section 6 concludes.

2 Currency Portfolios

Let Sk,t be the exchange rate between the US dollar (USD) and foreign currency k, measured

as foreign currency units (FCUs) per USD. Define sk,t = lnSt. The logarithmic return to

borrowing one US dollar (USD) in the short term money market and investing it in a short-

term security denominated in foreign currency k, is

rk,t+1 = i∗k,t − it − (sk,t+1 − sk,t) (1)

where it is the US interest rate and i∗k,t is the foreign interest rate. The uncovered interest

parity (UIP) condition states that

Et(sk,t+1 − sk,t) = i∗k,t − it, (2)

or, equivalently, that

Etrk,t+1 = 0, (3)

where Et is the expectations operator given information available at time t. That is, if

the foreign interest rate exceeds the US interest rate, the foreign currency is expected to

depreciate by the amount of the interest differential.

Let Fk,t be the one period forward exchange rate between the same currencies, and let

fk,t = lnFk,t. Up to a log approximation, covered interest parity (CIP) implies that

i∗k,t − it = fk,t − sk,t. (4)

Therefore, assuming that CIP holds, the log return to being long foreign currency k and

short the USD is

rk,t+1 = fk,t − sk,t+1. (5)

Thus, under CIP, the UIP condition implies forward rate unbiasedness:

Etsk,t+1 = fk,t (6)
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2.1 Carry Trade Strategies

Carry trade strategies generally involve systematically managing a portfolio in which the

investor borrowing funds in low interest rate currencies and invests (or lends) in high interest

rate currencies. Under uncovered interest parity, however, we would not expect this strategy

to be profitable because Etrk,t+1 = 0. However, the empirical failure of UIP condition is

well-documented.5 In fact, it is widely understood that nominal exchange rates are well

approximated, empirically, as random walks; i.e. Etsk,t+1 ≈ sk,t.
6 When this is true

Etrk,t+1 ≈ i∗k,t − it = fk,t − sk,t. (7)

This fact provides motivation for carry trade strategies because it suggests that by system-

atically borrowing low interest rate currencies and lending in high interest rate currencies,

the investor can expect to earn profits equal to the interest differential.

We study several carry trade strategies discussed in the previous literature. Burnside

et al. (2011) introduce an equally-weighted carry trade (EWC) strategy that is also studied

by Burnside et al. (2011) and Burnside (2012). This strategy uses the USD as a base currency.

Each of the Nt foreign currencies in the available data is treated as follows. If the currency

has a higher interest rate than the USD, the investor lends in that currency and borrows

1/Nt dollars. If the currency has a lower interest rate than the USD, the investor borrows

that currency and lends 1/Nt dollars. Thus, the total bet of this strategy is normalized to

one USD. The return of the EWC portfolio between t and t+ 1 is:

rEWC
t+1 =

Nt∑
k=1

1

Nt

sign(fk,t − sk,t) · (fk,t − sk,t+1) =
Nt∑
k=1

1

Nt

sign(fk,t − sk,t) · rk,t+1. (8)

Following Lustig et al. (2011), at each date t, we also allocate the available currencies

into five portfolios, labeled P1, P2, P3, P4 and P5, with P1 corresponding to the currencies

with the lowest interest rates, and P5 containing those currencies with the highest interest

rates. Each portfolio holds an equally weighted long position in its constituent currencies

financed by borrowing dollars. Hence, the log return of the ith portfolio is

rPit+1 =
∑
k∈Ki,t

1

Ni,t

(fk,t − sk,t+1) =
Nt∑
k=1

1

Ni,t

rk,t+1, (9)

5Hansen and Hodrick (1980), Bilson (1981), Fama (1984b) provide early tests. More recently, Engel
(1996) and Burnside (2014) provide updated tests of UIP.

6The classic reference is Meese and Rogoff (1983).
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where Ki,t is the set of currencies in the ith portfolio and Ni,t is the number of currencies in

the ith portfolio.

Lustig et al. (2011) use P1–P5 to construct two additional portfolios: the DOL portfolio

and the HML portfolio. The DOL portfolio is an equally weighted average of the P1–P5

portfolios. Therefore, its return is

rDOL
t+1 =

1

5

5∑
i=1

rPit+1. (10)

The HML portfolio is a typical high-minus-low portfolio which takes a long position in the

P5 portfolio and a short position in the P1 portfolio. In this sense, it can be thought of as

a carry trade portfolio that finances long positions in the highest interest rate currencies,

financed by borrowing the lowest interest rate currencies. Its return is

rHML
t+1 = rP5t+1 − rP1t+1. (11)

We also follow Daniel et al. (2017) by constructing a spread-weighted carry trade portfolio

(SPD) and a dollar-neutral carry trade portfolio (DNC). The SPD portfolio modifies the

EWC portfolio by weighting each currency based on the size of its interest differential relative

to the average absolute interest differential. The return of SPD portfolio is

rSPDt+1 =
Nt∑
k=1

fk,t − sk,t∑Nt

j=1 |fj,t − sj,t|
· (fk,t − sk,t+1) (12)

The EWC and SPD carry trade strategies are rationalized based on the perspective of a

US investor who believes that each exchange rate is a random walk and that the position

in each currency should be based on whether the expected return is positive or negative.

The decision to buy each currency is based on the interest rate differential with the USD,

and this means these portfolios are not dollar neutral. The DNC portfolio, by contrast, is

constructed in a way that means there is no basis currency. Each currency is included in

an equally-weighted way depending on its interest rate relative to the median interest rate

among all the currencies. Thus, the return of the DNC portfolio is

rDNC
t+1 =

Nt∑
k=1

1

Nt

sign(fk,t − sk,t − φt) · (fk,t − sk,t+1), (13)

where φt = median{fk,t − skt}Nt
k=1.
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For the 2001–12 period, we form the P1–P5, EWC, SPD, DNC, HML and DOL portfolios

using data for a set of 20 of the most liquid currencies according to trading volume.7 The

portfolios are formed on a weekly basis, each with a holding period of one week. Descriptive

statistics for the portfolio returns are summarized in Table 1. It shows the mean (median)

return, standard deviation, skewness, kurtosis, Sharpe ratio and the first order autocorrela-

tion coefficient. We also report two coskewness measures relative to the returns to the DOL

portfolio.8 Portfolios with higher coskewness earn higher returns when global volatility is

high. Thus, greater coskewness is often interpreted as making a portfolio more effective as

a hedge against global volatility.

As Table 1 shows, the mean returns monotonically increase from portfolio P1 to portfolio

P5 with the lowest return being 1.6% (on an annual basis) and the highest being 13.9%.

The return from DOL portfolio is the average of the five portfolios, 6.9%. This suggests that

investors require a positive risk premium to invest in non-US short-term securities. Volatility

also displays an increasing pattern moving from P1 to P5, but it does not rise in proportion

to the expected return, so the Sharpe ratios also increase from P1 to P5. So high interest

rate currencies still yield higher returns after a standard adjustment for risk.

All of the carry trade portfolios have positive average returns and large Sharpe ratios.

The HML portfolio has the largest mean return (12.2%), but the SPD portfolio has the

largest Sharpe ratio, followed by HML, DNC and EWC. The returns of all of the portfolios

are negatively skewed, indicating the possibility of large negative realizations of the returns.

However, for portfolio P1 the skewness coefficient is approximately zero, suggesting that it

is less subject to the potential for big losses.

7The currencies in our data set are the EUR, JPY, GBP, CHF, AUD, NZD, CAD, SEK, NOK, MXN,
BRL, ZAR, KRW, SGD, HKD, TRY, HUF, PLN, CZK, and SKK. We observe the exchange rates from the
first week of November 2001 to the fourth week of March 2012. Appendix A provides further details.

8Following Harvey and Siddique (2000) a direct measure for coskewness is

βSKS =
E[εt+1ε

2
M,t+1]

E[εt+1]0.5E[ε2M,t+1]
,

where εt+1 is the innovation of the excess return of a portfolio, and εM,t+1 is the innovation of the excess
return of some market factor (here we use the DOL factor). The innovations are constructed using first order
autoregressive models for both the portfolio return and the DOL return.

The second coskewness measure is based on the regression

rt+1 = β0 + β1r
DOL
t+1 + βSKD(rDOL

t+1 )2 + ut+1,

where rt+1 is the return on some portfolio and (rDOL
t+1 )2 is a proxy for market volatility.
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2.2 Order Flow Portfolios

We also form portfolios based on order flow data for the set of currencies in our data set.

We use a unique data set, from one of the top foreign exchange dealers, covering more than

eleven years (2001–2012) of weekly end-user order flow for up to 20 currencies.9

Let xk,t denote the aggregate order flow (the total value of buy orders, net of sell orders)

for currency k in the interval between periods t and t+ 1. Order flow is not easily compared

across currencies, due to the heterogenous volume of trade in each of the currencies. There-

fore, to make such comparisons we adjust the aggregated order flow for currency k at time

t with the standard deviation of the order flow of currency j over the full sample. That is,

we define adjusted order flow as

yk,t =
xk,t

std(xk)
. (14)

At each week t, we sort the 20 currencies into five portfolios according to yk,t, which are

labeled O1, O2, . . . , O5 where O1 consists of the currencies with greatest selling pressure

(lowest, or most negative, order flow) and O5 consists of the currencies with the greatest

buying pressure (most positive order flow). These are not tradable portfolios because the

measure of order flow is contemporaneous to the return. Our purpose in studying these

portfolios is, in fact, to measure the degree to which order flow and the returns are associ-

ated. We also define a buy-minus-sell (BMS) portfolio, which is long portfolio O5 and short

portfolio O1.

Table 2 shows summary statistics for these portfolios. There is a clear monotonically

increasing pattern in the expected returns and Sharpe ratios of the O1–O5 portfolios. Unlike

the interest rate sorted portfolios, P1–P5, the standard deviations of the returns do not

vary much across the five portfolios. Unsurprisingly, the average of the O1–O5 portfolios

(indicated by ‘Avg’ in Table 2) behaves similarly to the DOL portfolio in Table 1. The

BMS portfolio earns a large positive average return, with a very large Sharpe ratio. These

results, in a sense, confirm the notion that contemporaneous order flow is strongly positively

correlated with exchange rate changes and currency returns.

We also have data on order flow that is disaggregated by the customer type: Asset

Manager (AM), Hedge Fund (HF), Corporate (CO), and Private Client (PC). However,

these data are only available for nine developed country currencies, so we sort the currencies

9Appendix A provides further details of our data set.
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into four portfolios rather than five.10 As these are all major currencies we do not normalize

order flow by its standard deviation. These results are also reported in Table 2. For Asset

Managers and Hedge Funds the pattern across portfolios is the same as for aggregate order

flow. The portfolios with the most buying pressure earn the largest returns. For Corporate

customers the pattern is partially reversed, and for Private Clients it is sharply reversed:

The portfolios with the most buying pressure earn negative returns, while the ones with the

most selling pressure earn positive returns.11

Next, we compare the informational content of order flow with that of interest differen-

tials and volatility innovations. Menkhoff et al. (2012a) show that a global volatility proxy

contains important information which can be used to price returns of carry trade portfolios.

Relatedly Menkhoff et al. (2012b) show that momentum strategies are more profitable among

currencies that have greater idiosyncratic volatility. In both cases, the implication is that

volatility has an association with the riskiness of and return to holding different currencies

and currency portfolios. We believe that the apparent importance of volatility is strongly

linked to order flow and that, in fact, order flow contains the relevant information to price

returns of carry trade portfolios.

To provide the reader with a first intuitive view of this, we double sort our currencies in

two different ways with the results being shown in Tables 3 and 4. In Table 3, we first sort our

currencies into three portfolios based on their short term interest rates. Thereafter, within

each portfolio, we sort currencies into two bins based on the magnitude of order flow.12 The

main conclusion of Table 3 is that even after considering interest rates, a strategy consisting

in buying a portfolio with the highest buying pressure (high order flow) and selling a portfolio

with the highest selling pressure (low order flow), gives a positive and statistically significant

return. In other words, taking interest rates into account does not drive out order flow as

an important apparent determinant of currency returns.

In Table 4, we first sort our currencies into three portfolios based on their idiosyncratic

volatility innovation, and thereafter on the magnitude of order flow. Again, even after

considering idiosyncratic volatility innovations, a portfolio of the currencies with the highest

buying pressure has an economically and statistically significantly higher return than the

one with the greatest selling pressure.

10The nine currencies are EUR, JPY, GBP, CHF, AUD, NZD, CAD, SEK, NOK.
11Cerrato et al. (2011) show that these customer groups tend to act as liquidity providers.
12We build a total of just six portfolios due to the limited number of currencies in our sample.
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3 A Carry Trade-Order Flow Factor

The empirical results presented in Tables 2–4 suggest that order flow contains significant

information that could be relevant for pricing the returns to carry trade portfolios, and

potentially the returns to other currency trading strategies. In this section, we propose a

set of novel pricing factors based on order flow that are motivated by microstructure models

and the prevalence of carry trading in foreign exchange markets.

Our first factor is based on the aggregate order flow measure that we described above.

In particular, this factor, which we denote as CTOF, is defined as

CTOFt+1 =
1

Nt

∑
k∈Nt

yk,t · sign(fkt − skt). (15)

If investors build portfolios based on carry trade considerations, we might expect, yk,t to

be positive for high interest rate currencies and yk,t to be negative for low interest rate

currencies. Thus, we would expect CTOF to generally be positive. But yk,t should also

reflect news that arrives after investors form their portfolios, because it measures order flow

between periods t and t + 1. If arriving news is favorable to carry trades, we would expect

CTOF to be especially high. On the other hand, if news arrives that induces investors to

cash out their carry trade positions, CTOF will fall, and possibly even turn negative. In a

sense, therefore, CTOF can be interpreted as a factor that measures the degree of sentiment

in favor of carry trading.13

We also consider alternative carry-trade order-flow factors that use our order flow data

disaggregated by customer segment: Asset Manager, Hedge Fund, Corporate, and Private

Client. These are denoted as CTAM, CTHF, CTCO and CTPC. In a sense, these factors

measure the degree of carry trade activity by each customer type. As we saw, above, order

flow behaves differently across customer segments, so we expect the risk premium to change

across customers segments as well.14

We now explore the relationship between our carry-trade order-flow factor and the excess

returns of carry trade strategies. To do this, we divide the sample into four sub-samples that

are selected according to order flow size. The first sub-sample contains the 25% of the weeks

within our full sample with the lowest values of CTOF and the fourth sub-sample contains

13Burnside (2012) suggests that a significant part of trading activity in foreign exchange markets is trig-
gered by carry trade investors. Breedon et al. (2016) show that there is a strong relationship between order
flow data and currency forward premia.

14See Cerrato et al. (2015) and Menkhoff et al. (2016).
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Figure 1: Aggregate Carry-Trade Order-Flow and Carry-Trade Returns

Note: This figure shows mean excess returns for the carry-trade portfolios HML, SPD, EWC
and DNC depending on the quartile of the distribution of the carry-trade order-flow factor
(CTOF).

the 25% of the weeks within our full sample with the largest values of CTOF. Finally, we

compute the mean return across the sub-samples after employing four different carry trade

strategies (i.e. HML, SPD, EWC and DNC). Figure 1 shows the main results. High yield

currencies are highly affected by the carry trade order flow and vice versa. The average

excess return of the portfolios increases as we move from the left to the right. Figure 2

shows the same results across the different customer segments described above. Financial

customers (i.e. asset managers and hedge funds) are the most highly affected in periods of

high carry trade activity while non-financial customers (i.e. corporate customers and private

clients) can even profit during these times.

These results suggest that there is a clear relationship between carry-trade order-flow and

the excess returns of carry trade strategies, and that this relationship differs by the customer

segment. We explore these results further in what follows.

4 Cross-Sectional Asset Pricing

In this section, we follow the standard generalized method of moments (GMM) approach to

estimate linear stochastic discount factor (SDF) model, discussed in Cochrane (2005) and

used by Lustig et al. (2011), Burnside et al. (2011), and Menkhoff et al. (2012a) among many
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Figure 2: Disaggregated Carry-Trade Order-Flow and HML Returns

Note: This figure shows mean excess returns for the HML portfolio depending on the quartile
of the distribution of the disaggregated carry-trade order-flow factors CTAM, CTHF, CTCO
and CTPC.

others. Let re be an N × 1 vector of excess returns where N is the number of test assets. If

mt is an SDF for these returns, then

E(rem) = 0 (16)

where E is the unconditional expectations operator. As is standard in the literature, we

specify the SDF as a linear function of a k × 1 vector of risk factors, f :

m = 1− (f − µ)′b, (17)

where µ = E(f) and b is a k × 1 vector of parameters. Given this definition, the mean of

the SDF is normalized to 1.

When equation (16) is combined with equation (17) it becomes

E(re) = cov(re, f)b. (18)

Our other moment restriction is

E(f) = µ. (19)

This motivates the use of the following GMM estimators for b and µ
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b̂ = (C ′WC)−1C ′Wr̄e, (20)

µ̂ = f̄, (21)

where r̄e is the sample mean of re, f̄ is the sample mean of f , C is the sample covariance

matrix between re and f , and W is some positive definite weighting matrix. For the results

reported in this paper, we use an N × 1 identity matrix for W .15

Equation (18) can also be written as

E(re) = cov(re, f)Σ−1f Σfb = βλ, (22)

with β = cov(re, f)Σ−1f being an N × k matrix of factor β and λ = Σfb being a k× 1 vector

of risk prices. This is the beta representation of the pricing model, which we also estimate

using GMM methods described in Cochrane (2005) and the appendix to Burnside (2011).

When estimating either the SDF representation of the model or the beta representation, it

is important that the matrix cov(re, f) has full column rank (i.e. its rank should be k). When

this condition fails, the model is not properly identified, both estimators have non-standard

asymptotic distributions, and tests for the validity of the model also have non-standard

distributions as discussed in Burnside (2016). Therefore, we perform the tests proposed by

Kleibergen and Paap (2006) (KP) for testing the rank of cov(re, f). We mainly work with

models where k = 2. If cov(re, f) has rank 0, it means neither risk factor is correlated with

the return vector. If cov(re, f) has rank 1, it means one risk factor is uncorrelated with the

return vector or a linear combination of the two risk factors is uncorrelated with the return

vector.

As test assets, we use the returns to the five portfolios sorted on the interest rate differ-

entials described above (P1, P2, P3, P4 and P5). Since the HML and DNC portfolios are

closely related to P1–P5 we do not include them as test assets.16 We also do not include

EWC and SPD as test portfolios but we report portfolio betas in our results.

4.1 Traditional Pricing Factors

We start considering the traditional risk-based factors proposed in by Lustig et al. (2011)

and Menkhoff et al. (2012a). In Table 5, we start with the DOL and HML factors proposed

15Details of the computation of the parameter estimates and standard errors are provided in the online
appendix to Burnside (2011).

16HML is simply P5 minus P1, while DNC would be pure linear combination of the portfolios if there were
an even number of them instead of an odd number.
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by Lustig et al. (2011). Overall, the results are in line with what has been documented

in the empirical literature. The SDF parameter (b) for the HML factor is positive and

statistically significant, while the risk prices (λ) associated with both factors are also positive

and statistically significant. When we estimate the betas (β) of the test assets using time

series regressions they are close to 1 for the DOL factor and increase across portfolios for

HML portfolio (although they are small in magnitude for P2, P3 and P4). These results are

not surprising given the construction of the factors.17 The cross-sectional fit of the model is

excellent, and it passes the specification tests shown in Table 5. Additionally, the KP test

strongly rejects the null of reduced rank

Table 6 shows results for the model used by Menkhoff et al. (2012a), which includes DOL

as well as their global volatility innovation factor (DVOL). Again, the results are in line

with what has been documented in the literature. The SDF parameter and the risk price of

DVOL are both negative and statistically significant, indicating that portfolios with greater

exposure to higher volatility (i.e. lower returns when volatility increases) have higher mean

returns. When we estimate the betas (β) of the test assets using time series regressions

they are close to 1 for the DOL factor and decrease across portfolios for DVOL portfolio,

but several of the DVOL betas are statistically insignificant, and neither EWC nor SPD has

significant exposure to DVOL. The pattern in the betas reflects the fact that when global

currency volatility increases, returns to low interest rate currencies increase and the returns

to high interest rate currencies decrease. The cross-sectional fit of the model is excellent,

and it passes the specification tests shown in Table 6. The KP test cannot reject the null

of reduced rank at the 5% level, but it does so at the 10% level. This likely reflects the

imprecision in the estimates of the betas for most of the portfolios.

In sum, these models seem to work well in explaining carry trade excess returns in terms

of cross sectional R2, tests of model validity, and the time series dimension.

4.2 CTOF as a Risk Factor

Table 7 shows cross sectional asset pricing results using our aggregate carry-trade order-flow

risk factor, CTOF, in tandem with the DOL factor. The empirical evidence in Table 7

strongly supports CTOF as a pricing factor. The SDF parameter (b) for the CTOF factor is

17This follows from the fact that DOL is, effectively, the average of P1–P5 while HML is P5 minus P1.
See Burnside (2010) for further details. We note that EWC and SPD are both positively and statistically
significantly exposed to DOL and HML.
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positive and statistically significant, while the risk prices (λ) associated with both factors are

also positive and statistically significant. Thus, portfolios more positive exposure to CTOF

carry larger risk premia. The cross-sectional fit of the model is excellent, and it passes the

specification tests shown in Table 7. Additionally, the KP test strongly rejects the null

hypothesis of reduced rank at less than the 1% level.

Time series results show that portfolios with higher interest rates (P3, P4, and P5) have

positive and statistically significant exposure to CTOF. The lower interest rate portfolios

(P1 and P2) have negative and statistically significant exposure to CTOF. The betas are

monotonically increasing as we move from P1 to P5. These results mean that when the

order flow data suggest stronger trading pressure consistent with the carry trade, i.e. when

CTOF increases, the high interest rate portfolios earn higher returns and the low interest

rate portfolios earn lower returns. The pattern reverses if investors reverse their carry trade

holdings and CTOF decreases.18 As a consequence, low interest rate portfolios act as hedges

against a reversal of investors’ carry trade positions and high interest rate portfolios are

exposed to this risk.

4.3 Disaggregated Order Flow

Cerrato et al. (2011) show that order flow is highly informative but, crucially, knowing

the motivation for trading is also informative. For example, the motivation of leveraged

hedge funds and the information content in their order flow may be very different than

that of corporate customers. They show that the order flow of financial customers is highly

informative, and this suggests that the risk premia of our currency portfolios may differ

depending on how we measure order flow (specifically, for which customers we measure it).

For this reason, we now investigate whether the order flow factors associated with financial

customers are relatively more important in explaining the mean returns of our currency

portfolios.

Tables 8 and 9 show the results using our disaggregated order flow factors that were

defined above. Table 8 provides the results for financial customers (CTAM, CTHF), while

Table 9 provides the results for non-financial customers (CTCO and CTPC). The estimated

SDF coefficients and risk premia are statistically significant with the exception of corporate

18If there is more positive order flow to high interest rate currencies, and more negative order flow to low
interest rate currencies, our CTOF factor increases. If the reverse happens, it decreases. Thus, CTOF acts
like an indicator of the pressure on currency markets consistent with investors executing carry trades.
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clients (CTCO). Many of the betas are also statistically significant, and all of the models

pass the KP rank tests except the one for corporate clients, which appears to have reduced

rank.

What stands out in Tables 8 and 9 is the switch in the pattern in the betas for P1–P5

with respect to our order-flow factors, and the switch in the sign of the estimated risk price

associated with our order-flow factors as we move from financial to non-financial customers.

Time series regressions show that the betas coefficients for Asset Managers and Hedge Funds

(CTAM, CTHF) increase as we move from P1 to P5 and λ is positive. The betas of the

EWC and SPD portfolios are also positive. A traditional interpretation would be that the

high interest rate portfolios are more exposed to risk, as measured by CTAM and CTHF.

On the other hand, the reverse pattern is observed for the betas with respect to CTCO and

CTPC, and the estimated λ is negative.

The results seem to indicate that the positive sign of λ in the previous section, where

we used aggregate order flow, is driven by financial order flow, which may not be surprising

since financial order flow is more variable and accounts for more of the variation in total

order flow. The sign reversals are consistent with Menkhoff et al. (2016) who show that

the order flow of financial customers generates the highest cross-sectional spread in excess

returns while the order flows of corporate and private clients generate negative spreads in

portfolio excess returns. Our results are consistent with the risk sharing story in Menkhoff

et al. (2016) in that different group of customers (i.e. financial and non-financial) appear

to trade in different directions and, therefore, that risk sharing takes place in the customer

market, not just in the inter-dealer market as suggested in Evans and Lyons (2009).19

4.4 Factor Mimicking Portfolio

Following Breeden et al. (1989) and Menkhoff et al. (2012a), we create factor-mimicking

portfolios for each of DVOL, CTOF, CTAM, CTHF, CTCO and CTCP. The factor mim-

icking portfolio is a zero cost strategy that mimics the corresponding factor. For each of the

above factors, ft, the following regression is performed:

ft = c+ re′t θ + u, (23)

19Barber and Odean (2013), for the equity market, show that private investors (i.e. uninformed investors)
tend to lose money from trading.
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where ret is the 5 × 1 vector containing the returns on P1, P2, P3, P4 and P5. The factor

mimicking portfolio is

fFM
t = re′t θ̂, (24)

where θ̂ is the OLS estimate of θ.

In Table 10, we report the weights each portfolio attaches to P1–P5 as well as the mean

of the estimated factor-mimicking portfolio return. We find the factor mimicking portfolio

loadings for DVOL are in line with Menkhoff et al. (2012a). The loadings decrease from

positive for P1 and P2 to negative for P3, P4 and P5. This is not surprising as the returns

to the low interest rate portfolios tend to be high when volatility increases, and low when it

decreases. The opposite pattern is observed for high interest rate currencies.

For the CTOF factor the portfolio weights are negative for P1 and P2 and positive for

P3, P4 and P5. This is consistent with what we have already seen, which is that high interest

rate currencies have higher returns when the order flow to them is larger. The pattern is

similar for the disaggregated order-flow factors, CTAM and CTHF. The CTPC factor has,

roughly-speaking, a reversed pattern in the loadings, while CTCO has no consistent pattern

in the portfolio weights and almost none of them are statistically significant.

The signs of the average factor-mimicking-portfolio returns are consistent with the risk

price estimates from our cross-sectional asset pricing exercise, except for the CTCO factor,

which has a small positive average return (0.03%) and a negative risk price.

4.5 Economic Interpretation

In this section we argue that our carry trade factor, CTOF, can be viewed as a proxy for the

realization of crash risk. When CTOF is large and positive, investors—in particular hedge

funds and asset managers—are taking on larger long positions in high interest rate currencies

financed by larger short positions in low interest rate currencies. They earn higher returns at

these times, but the positions they are taking on involve more risk. When they reverse these

positions, CTOF becomes large and negative, and our results show that high interest rate

currencies tend to depreciate at these times, while low interest rate currencies appreciate.

The microstructure interpretation is that the investors collective reversal of their positions

in response to the arrival of new information leads to the currency crash.

While this seems like a completely reasonably interpretation of our findings one might

wonder whether the behavior of CTOF can be captured by changes in volatility or changes
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in currency skewness. For example, Menkhoff et al. (2012a) find that carry trades tend to

lose money in times of high currency volatility and Rafferty (2012) finds that carry trades

tend to lose money when currency returns are more left-skewed. To see whether CTOF is

capturing the same information, in Table 11, we perform simple regressions of CTOF, and

our disaggregated order-flow factors, on DVOL and on a similar skewness factor.20 The

estimated coefficients have the expected signs, and in most cases are statistically significant,

but the R2 are rather small. Our conclusion is that there is more to our order-flow factors

than is captured in measures of volatility and skewness.

5 Momentum

As documented by Burnside et al. (2011), Lustig et al. (2011), and Menkhoff et al. (2012b),

momentum strategies in the foreign exchange market are also profitable. Simply buying

a basket of currencies with previously high returns and selling a basket with previously

lower returns results is highly profitable. The literature has concluded that it is difficult

to rationalise the return of such strategies with traditional risk factors. In this section, we

show that order flow can help to rationalise the empirically observed high returns from this

trading strategy.

Similar to our approach for the carry trade, we form five momentum portfolios (M1, M2,

M3, M4 and M5) based on either the return over the previous week, or the return over the

previous four weeks. We assume investors open new positions each week and the holding

period is one week. Portfolio M1 contains the currencies with the lowest lagged returns and

portfolio P5 has the highest lag returns. We also consider a momentum HML portfolio (M5

minus M1). Table 12 provides a variety of summary statistics for these portfolios, in our

full sample as well as in the pre-financial crisis period. Consistent with the prior literature,

we find that, especially with the strategy based on four-week lagged returns, a momentum

strategy was highly profitable in historical data.

Next we present cross-sectional asset pricing results when using the order flow as a factor

to price momentum portfolios. We build a momentum-based order-flow factor, MOOF, using

20We use daily DOL returns to calculate the 30 days rolling sample skewness and use the end of each week
data to generate the weekly series.
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a similar approach to the one we used for the carry-trade factor:

MOOFt+1 =
1

Nt

∑
k∈Nt

yk,t · sign(rkt + rkt−1 + rkt−2 + rkt−3). (25)

Our baseline factor is based on the sign of the of the past four weeks’ returns for each

currency, but we found similar results when using different lagged returns to define the

factor.

Table 13 shows cross-sectional asset pricing results using aggregated order flow and Tables

14 and 15 show analogous results using momentum factors based on order-flow disaggregated

by customer segment. Overall, the results are very encouraging and suggest that order flow

contains important information that can also be used to price momentum portfolio returns.

It is worth to point out the very different results that we obtain across the different trading

segments. The estimated coefficients are all statistically significant and they carry the same

sign as in Tables 8 and 9.

6 Conclusion

We have demonstrated that, at the weekly frequency, order-flow is closely associated with

systematic patterns in currency returns. We have shown that if currencies are sorted on

the basis of aggregated normalized order-flow, portfolios of currencies with stronger buying

pressure tend to appreciate relative to currencies with weaker buying (or strong selling)

pressure. At the disaggregated level, we see the same pattern when we use the order-flow

of financial customers (hedge funds and asset managers). However, the pattern is reversed

when we use the order-flow of non-financial customers (corporates and private customers).

This suggests that a form of risk sharing takes place in the foreign exchange market, not just

between dealers and non-dealers, but within the confines of the non-dealer customer base.

We have also explored the use of order-flow based risk factors in a traditional SDF

approach to cross-sectional asset pricing. In particular, we built order-flow based factors

that tend to increase in size if order flow reveals more buying pressure in the direction of

currencies that have higher interest rates than the US dollar. We referred to these as carry-

trade order-flow factors and we showed that they perform extremely well when we price a

cross-section of currency returns. When aggregate order-flow or financial order flow increases

towards buying more high interest rate currencies and selling low interest rate currencies,

returns to the carry trade have a tendency to increase. Similarly when our order-flow factor
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suggests a reversal of carry trade positions, returns to the carry trade decrease. We also

find that a similarly motivated set of momentum-based order-flow factors can price the

cross-section of returns ordered on the basis of past currency momentum.

In sum, our results suggest that results in the extant literature, which are based on

reduced-form factors such as the HML factor of Lustig et al. (2011), or the global currency

volatility factor of Menkhoff et al. (2012a), may lend support to a microstructure model-

based interpretation of the data.
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Data Appendix

Our data-set consists of 20 of the most liquid currencies with the largest trading volume

(EUR, JPY, GBP, CHF, AUD, NZD, CAD, SEK, NOK, MXN, BRL, ZAR, KRW, SGD,

HKD, TRY, HUF, PLN, CZK, SKK).

We use price quotes of spot exchange rate from the first week of November 2001 to

the fourth week of March 2012. All exchange rates are quoted against US dollar, and

we normalize on expressing each exchange rate as the number of foreign currency units

(FCU) per US dollar (USD). The weekly and daily spot exchange rates are obtained from

WM/Reuters (via Datastream).

We use a unique dataset, from one of the world’s largest foreign exchange dealers, that

contains weekly customer order flows for the same 20 currencies from November 2001 to

March 2012. We have order flow data aggregated across four types of clients (9 countries,

EUR, JPY, GBP, CHF, AUD, NZD, CAD, SEK, NOK): asset manager (AM), corporate

clients (CO), hedge funds (HF) and private clients (PC). Asset managers and hedge funds

are recognized as financial customers. Corporate and private clients are recognized as non-

financial customers.

We believe that the order flows collected from this dealer are representative of the end-

user currency demand in the foreign exchange market given that it has significant market

share. The order flows measure the US dollar value of buyer-initiated minus seller initiated

trades of a currency. A positive net order flow indicate net buying of foreign currency.
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Table 1: Interest-Rate Sorted and Carry-Trade Portfolios: Summary Statistics

Portfolio P1 P2 P3 P4 P5
Mean (%) 1.56 5.44 6.25 7.85 13.88
SD 6.23 8.49 8.17 9.87 10.77
SR 0.25 0.64 0.77 0.80 1.29
Skew -0.04 -0.41 -0.40 -0.47 -0.45
AC1 0.07∗ -0.01 0.02 0.01 -0.07∗

Coskew1 0.21 -0.01 0.03 -0.09 -0.06
Coskew2 5.94 -0.27 0.74 -2.24 -2.15
Portfolio DOL EWC SPD HML DNC
Mean (%) 6.89 4.79 12.35 12.16 2.94
SD 7.76 5.49 8.96 9.86 2.78
SR 0.89 0.87 1.38 1.23 1.06
Skew -0.49 -0.61 -0.52 -0.41 -0.36
AC1 0.01 -0.05 -0.04 -0.12∗∗∗ -0.11∗∗∗

Coskew1 0.54 -0.17 -0.30 -0.15 -0.14
Coskew2 0.00 -3.76 -3.46 -9.03 -2.29

Note: The table reports the descriptive statistics for currency portfolios P1–P5, which are
sorted on the basis of short term interest rates. We also report statistics for the DOL,
EWC, SPD, HML and DNC portfolios. It reports the annualized mean return (%), standard
deviation (SD), Sharpe ratio (SR), and skewness (Skew) for each portfolio. We also report
the first order autocorrelation coefficient (AC1) and its significance (***1%, **5%, *10%).
We also report two measures of coskewness between the individual portfolios and the DOL
portfolio. Coskew1 and Coskew2 corresponded, respectively, to βSKS and βSKS as described
in the main text.
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Table 2: Order-Flow Portfolios: Summary Statistics

O1 O2 O3 O4 O5 Avg. BMS
A) Aggregated order flow/Full sample
Mean (%) -6.51 3.59 7.76 10.87 18.65 6.83 25.21

(3.08) (2.67) (2.64) (2.74) (2.65) (2.49) (2.29)
SD 9.01 8.56 8.59 8.28 8.66 8.87 6.36
SR -0.72 0.42 0.90 1.31 2.15 0.77 3.97
B) Disaggregated order flow/Major currency sample

Asset manager
Mean (%) -5.56 4.78 6.25 14.09 4.89 19.66

(2.56) (3.24) (3.07) (2.70) (2.58) (2.00)
SD 8.61 9.99 9.91 8.40 8.20 6.16
SR -0.65 0.48 0.63 1.68 0.60 3.19

Hedge fund
Mean (%) -7.62 4.38 6.84 15.34 4.73 22.96

(2.98) (3.10) (2.82) (2.70) (2.57) (2.30)
SD 8.96 10.11 9.48 8.52 8.19 6.79
SR -0.85 0.43 0.72 1.80 0.58 3.38

Corporate
Mean (%) 7.19 7.94 8.59 1.93 6.41 -5.26

(2.93) (2.90) (2.77) (2.75) (2.56) (1.84)
SD 8.68 9.64 9.91 8.69 8.16 6.34
SR 0.83 0.82 0.87 0.22 0.79 -0.83

Private client
Mean (%) 23.64 8.76 2.20 -5.34 7.32 -28.98

(2.59) (3.36) (3.01) (2.75) (2.57) (2.15)
SD 8.66 9.80 9.67 8.81 8.16 6.92
SR 2.73 0.89 0.23 -0.61 0.90 -4.19

Note: For each of the portfolios O1–O5, which are sorted by contemporaneous order flow,
this table reports the annualized mean excess return (with heteroskedasticity consistent
standard errors reported in parentheses), standard deviation (SD) and Sharpe ratio (SR) for
currencies sorted on contemporaneous order flow. Column ’Avg.’ shows the average across
all portfolios. Column ’BMS’ (buy minus sell) reports the return of holding O5 long and
O1 short. The first panel reports statistics for portfolios based on normalized aggregated
order flow for the full sample of 20 currencies. The lower panels report statistics portfolios
based on disaggregated order flow for a smaller sample of nine major currencies, where the
disaggregation is by customer type.
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Table 3: Double Sorts on Interest Rate and Order Flow: Mean Returns (%)

Interest rate
Order flow Low Medium High HML
Sell -2.61 3.50 4.09 6.70

(2.22) (2.91) (3.47) (2.67)
Buy 6.67 10.78 16.41 9.73

(2.23) (2.63) (3.45) (2.99)
BMS 9.28 7.28 12.32

(1.56) (1.43) (2.63)

Note: This table reports the annualized mean returns (with heteroskedasticity consistent
standard errors in parentheses) for six double-sorted portfolios based on interest rate and
the value of aggregated order flow.

Table 4: Double Sorts on Volatility Innovation and Order Flow: Mean Returns (%)

Volatility Innovation
Order flow Low Medium High HML (Vol)
Sell 6.44 0.73 -3.70 -10.14

(2.46) (2.48) (3.51) (2.35)
Buy 14.19 12.76 10.98 -3.21

(2.10) (2.50) (3.51) (2.69)
BMS 7.75 12.03 14.68

(1.56) (1.33) (2.21)

Note: This table reports the annualized mean returns (with heteroskedasticity consistent
standard errors in parentheses) for six double sorted portfolios based on volatility innovations
and the value of aggregated order flow.
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Table 5: Estimates of the DOL-HML Model

DOL HML R2 HJ
GMM
b 4.16 10.02 0.97 1.06

(4.58) (3.58) [0.79]
λ (×100) 0.17 0.31

(0.06) (0.08)
FMB χ2

λ (×100) 0.17 0.31 1.47
(0.06) (0.08) [0.83]

Betas α β-DOL β-HML R̄2

(×100)
P1 0.02 0.76 -0.37 0.84

(0.02) (0.02) (0.01)
P2 0.03 0.98 -0.19 0.81

(0.03) (0.04) (0.03)
P3 0.03 0.90 -0.10 0.82

(0.02) (0.034) (0.03)
P4 0.03 1.04 -0.02 0.83

(0.03) (0.04) (0.03)
P5 0.08 0.72 0.44 0.86

(0.03) (0.04) (0.06)
EWC -0.02 0.47 0.24 0.83

(0.02) (0.04) (0.02)
SPD 0.04 0.72 0.44 0.90

(0.02) (0.03) (0.02)
Stat. d.f. p-value

Rank(0) 521 10 [0.00]
Rank(1) 73 4 [0.00]

Note: We present SDF and beta representation estimates for the DOL-HML model, as well
as portfolio time series regressions and KP reduced-rank tests. The test assets are P1–P5,
the five portfolios sorted on interest rate. The first panel shows the estimates of the SDF
coefficients, b, from first stage GMM, corresponding risk prices, λ, the cross-sectional R2 and
Hansen-Jagannathan distance (HJ). The second panel show estimates of the beta representa-
tion using the Fama-MacBeth approach (FMB), including a χ2 measure of fit. No intercept
is included in the FMB approach. The third panel shows time series regression results for the
five test portfolios as well as the EWC and SPD carry trade portfolios described in the main
text. We report regression intercept α, factor betas and time-series R2. The fourth panel
reports the KP rank tests. In all panels, standard errors are reported in parentheses, with
p-values for tests in square brackets. We use weekly data, from the first week of 2001M11
to the fourth week of 2012M3 for a sample size of 543.

29



Table 6: Estimates of the Volatility (DOL-DVOL) Model

DOL DVOL R2 HJ
GMM
b -0.04 -1.62 0.90 2.42

(7.63) (0.79) [0.49]
λ (×100) 0.17 -40.49

(0.11) (19.45)
FMB χ2

λ (×100) 0.17 -40.49 4.94
(0.06) (14.20) [0.29]

Betas α β-DOL β-DVOL R̄2

(×100) (×100)
P1 -0.03 0.51 0.17 0.50

(0.03) (0.05) (0.08)
P2 0.00 0.85 0.15 0.77

(0.03) (0.06) (0.11)
P3 0.01 0.84 0.03 0.81

(0.02) (0.05) (0.08)
P4 0.02 1.02 -0.02 0.84

(0.03) (0.05) (0.11)
P5 0.14 1.02 -0.15 0.71

(0.04) (0.05) (0.11)
EWC 0.01 0.63 -0.05 0.71

(0.02) (0.04) (0.06)
SPD 0.01 1.02 -0.19 0.73

(0.04) (0.05) (0.08)
Stat. d.f. p-value

Rank(0) 212 10 [0.00]
Rank(1) 9 4 [0.07]

Note: We present SDF and beta representation estimates for the DOL-DVOL model, as well
as portfolio time series regressions and KP reduced-rank tests. See the note to Table 5 for
details.

30



Table 7: Estimates of the Carry-Trade Order-Flow (DOL-CTOF) Model

DOL CTOF R2 HJ
GMM
b -0.22 1.75 0.83 5.43

(6.19) (0.74) [0.14]
λ (×100) 0.16 10.31

(0.06) (3.95)
FMB χ2

λ (×100) 0.16 10.31 6.25
(0.06) (0.04) [0.18]

Betas α β-DOL β-CTOF R̄2

(×100) (×100)
P1 -0.06 0.54 -0.69 0.53

(0.03) (0.05) (0.12)
P2 -0.01 0.86 -0.31 0.77

(0.03) (0.07) (0.10)
P3 0.03 0.82 0.22 0.81

(0.02) (0.05) (0.09)
P4 0.04 1.00 0.31 0.84

(0.03) (0.05) (0.10)
P5 0.16 0.99 0.61 0.71

(0.04) (0.05) (0.15)
EWC 0.03 0.60 0.56 0.73

(0.02) (0.05) (0.11)
SPD 0.13 0.98 0.77 0.74

(0.04) (0.05) (0.15)
Stat. d.f. p-value

Rank(0) 275 10 [0.00]
Rank(1) 34 4 [0.00]

Note: We present SDF and beta representation estimates for the DOL-CTOF model, as well
as portfolio time series regressions and KP reduced-rank tests. See the note to Table 5 for
details.
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Table 8: Estimates of the Disaggregated Order-Flow Model for Financial Customers

Asset Managers Hedge Funds
DOL CTAM R2 HJ DOL CTHF R2 HJ

GMM
b 5.93 2.41 0.73 6.88 9.87 2.97 0.83 4.93

(4.82) (1.20) [0.08] (4.19) (1.25) [0.18]
λ (×100) 0.17 6.49 0.16 5.91

(0.06) (3.06) (0.06) (2.46)
FMB χ2 χ2

λ (×100) 0.17 6.49 7.39 0.16 5.91 6.38
(0.06) (2.56) [0.12] (0.06) (0.02) [0.17]

Betas α β-DOL β-CTAM R̄2 α β-DOL β-CTHF R̄2

(×100) (×100) (×100) (×100)
P1 -0.05 0.52 -1.04 0.53 -0.05 0.50 -1.31 0.54

(0.03) (0.05) (0.21) (0.03) (0.05) (0.20)
P2 -0.01 0.86 -0.61 0.77 0.00 0.84 -0.19 0.77

(0.03) (0.06) (0.18) (0.03) (0.06) (0.22)
P3 0.02 0.83 0.06 0.81 0.02 0.83 0.21 0.81

(0.02) (0.05) (0.15) (0.02) (0.05) (0.16)
P4 0.03 1.02 0.33 0.84 0.03 1.02 0.28 0.84

(0.03) (0.05) (0.17) (0.03) (0.05) (0.19)
P5 0.14 1.02 0.30 0.70 0.15 1.02 0.89 0.71

(0.04) (0.05) (0.27) (0.04) (0.05) (0.27)
EWC 0.02 0.61 1.01 0.74 0.03 0.63 1.22 0.75

(0.02) (0.04) (0.21) (0.02) (0.04) (0.18)
SPD 0.11 1.01 1.07 0.75 0.12 1.03 1.38 0.75

(0.04) (0.05) (0.26) (0.04) (0.05) (0.24)
Stat. d.f. p-value Stat. d.f. p-value

Rank(0) 250 10 0.00 235 10 [0.00]
Rank(1) 19 4 0.00 49 4 [0.00]

Note: We present SDF and beta representation estimates for the carry-trade order flow
model using disaggregated order flow for financial customers, as well as portfolio time series
regressions and KP reduced-rank tests. CTAM is the order flow factor for Asset Managers.
CTHF is the order flow factor for Hedge Funds. See the note to Table 5 for details.
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Table 9: Estimates of the Disaggregated Order-Flow Model for Non-financial Customers

Corporate Private Clients
DOL CTCO R2 HJ DOL CTPC R2 HJ

GMM
b 19.19 -18.35 0.74 3.48 10.88 -4.41 0.81 5.73

(7.70) (12.07) [0.32] (4.52) (2.09) [0.13]
λ (×100) 0.19 -7.05 0.17 -2.70

(0.08) (4.68) (0.07) (1.27)
FMB χ2 χ2

λ (×100) 0.19 -7.05 7.31 0.17 -2.70 6.6002
(0.06) (2.83) [0.12] (0.06) (1.05) [0.16]

Betas α β-DOL β-CTCO R̄2 α β-DOL β-CTPC R̄2

(×100) (×100) (×100) (×100)
P1 -0.03 0.49 0.80 0.50 -0.04 0.50 2.95 0.56

(0.03) (0.05) (0.45) (0.03) (0.04) (0.38)
P2 0.01 0.84 0.89 0.77 0.00 0.84 1.02 0.77

(0.03) (0.06) (0.41) (0.03) (0.06) (0.38)
P3 0.01 0.83 -0.18 0.81 0.02 0.83 0.09 0.81

(0.02) (0.05) (0.35) (0.02) (0.05) (0.27)
P4 0.02 1.02 0.11 0.84 0.02 1.02 -0.50 0.84

(0.03) (0.05) (0.40) (0.03) (0.05) (0.27)
P5 0.14 1.03 -0.16 0.70 0.14 1.02 -1.29 0.71

(0.04) (0.05) (0.51) (0.04) (0.05) (0.50)
EWC 0.00 0.64 -1.28 0.72 0.01 0.63 -3.51 0.80

(0.02) (0.04) (0.43) (0.02) (0.03) (0.40)
SPD 0.09 1.04 -1.20 0.74 0.10 1.0258 -3.78 0.78

(0.04) (0.05) (0.05) (0.03) (0.04) (0.56)
Stat. d.f. p-value Stat. d.f. p-value

Rank(0) 192 10 0.00 215 10 [0.00]
Rank(1) 6 4 0.19 21 4 [0.00]

Note: We present SDF and beta representation estimates for the carry-trade order flow
model using disaggregated order flow for non-financial customers, as well as portfolio time
series regressions and KP reduced-rank tests. CTCO is the order flow factor for Corporate
customers. CTPC is the order flow factor for Private Clients. See the note to Table 5 for
details.
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Table 10: Factor-Mimicking Portfolios

Factor-Mimicking Portfolio Weights Mean Return
P1 P2 P3 P4 P5 (%)

DVOL 5.08 5.00 -3.64 -4.69 -5.16∗∗ -1.84
CTOF -7.98∗∗∗ -2.47∗∗∗ 6.71∗∗∗ 3.83∗∗∗ 2.55∗∗∗ 1.57
CTAM -5.62∗∗∗ -1.97 3.30∗∗∗ 3.53∗∗∗ 0.11 0.58
CTHF -7.01∗∗∗ 0.80 2.40∗∗ 0.49 0.63 0.40
CTCO 0.61 0.80∗ -0.77 0.03 0.05 0.03
CTPC 4.34 0.03 -1.10∗∗ -1.06∗∗ -0.20 -0.21

Note: This table reports factor-mimicking portfolios based on the five interest-rate sorted
portfolios, P1–P5, for each of the pricing factors DVOL, CTOF, CTAM, CTHF, CTCO, and
CTPC. The portfolio weights are the estimated coefficients, θ̂, from an OLS regression of
each factor on the vector of five portfolio returns, r. The asterisks indicate the significance
level of each coefficient based on heteroskedasticity-consistent standard errors (*** for 1%,
** for 5%, * for 10%). The average return is the mean of r′θ̂ for each factor-mimicking
portfolio expressed in annualized percent.

Table 11: Projections of DVOL and SKEWNESS on the Carry-Trade Order-Flow Factors

DVOL SKEWNESS
Intercept β R̄2 Intercept β R̄2

(×100) (×100)
CTOF -3.28 -8.63∗∗∗ 0.0296 -3.04 4.93∗∗ 0.0058

(1.04) (2.14) (1.02) (2.20)
CTAM -1.14 -4.62∗∗∗ 0.0185 -1.17 -0.43 -0.0017

(0.71) (1.48) (0.72) (1.61)
CTHF -1.67 1.27 0.0002 -1.52 3.08∗∗ 0.0071

(0.66) (1.79) (0.67) (1.39)
CTCO -0.79 -1.11∗∗ 0.0060 -0.79 0.08 -0.0018

(0.39) (0.49) (0.38) (0.73)
CTPC 0.16 0.41 -0.0012 0.17 0.41 -0.0014

(0.33) (0.70) (0.33) (0.80)

Note: This table reports OLS estimates (intercept and slope coefficient, β) of regres-
sions of DVOL and a similar SKEWNESS measure on our carry-trade order -flow factors.
Heteroskedasticity-robust standard errors are in parentheses. Significance levels are indicated
by ***1%, **5% and *10%.
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Table 12: Momentum Portfolios: Summary Statistics

M1 M2 M3 M4 M5 HML (Mom)
A) Full Sample

Momentum defined over one lagged week
Mean (%) 6.69 6.20 6.83 6.32 6.96 0.27

(3.00) (2.49) (2.65) (2.75) (3.36) (2.95)
SD 9.38 8.40 8.74 8.69 9.22 9.09
SR 0.71 0.74 0.78 0.73 0.75 0.03
Skew -0.43 -0.52 -0.42 -0.43 -0.51 -0.08

Momentum defined over four lagged weeks
Mean (%) 3.86 5.40 6.61 8.57 10.61 6.75

(2.83) (2.98) (2.72) (2.75) (3.03) (2.51)
SD 8.90 8.96 8.61 8.70 9.19 8.77
SR 0.44 0.60 0.77 0.99 1.16 0.77
Skew -0.44 -0.40 -0.36 -0.41 -0.60 -0.13
B) Pre-financial crisis

Momentum defined over one lagged week
Mean (%) 5.96 8.20 10.30 7.99 14.53 8.57

(3.05) (2.88) (3.27) (3.00) (3.67) (3.49)
SD 7.77 7.39 7.79 7.26 7.81 7.76
SR 0.77 1.11 1.32 1.10 1.86 1.11
Skew -0.44 -0.37 -0.48 -0.41 -0.41 -0.07

Momentum defined over four lagged weeks
Mean (%) 4.14 9.09 9.55 9.04 17.24 13.10

(2.90) (3.19) (3.24) (3.30) (3.35) (2.85)
SD 7.15 7.36 7.61 7.83 8.40 7.63
SR 0.58 1.23 1.25 1.15 2.05 1.72
Skew -0.24 -0.18 -0.17 -0.52 -0.71 -0.29

Note: The table reports the descriptive statistics for currency portfolios M1–M5, which are
sorted on the basis of lagged currency returns over either one of four weeks.. It reports
the annualized mean return (%) (with heteroskedasticity consistent standard errors reported
in parentheses), standard deviation (SD), Sharpe ratio (SR), and skewness (Skew) for each
portfolio. The holding period of the portfolios is one week in both cases. We report results
for both our full sample (panel A) and the pre-financial crisis sample (panel B).
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Table 13: Estimates of the Momentum Order-Flow (DOL-MOOF) Model

DOL MOOF R2 HJ
GMM
b 3.24 2.14 0.83 1.03

(1.27) (0.89) [0.80]
λ (×100) 0.51 13.48

(0.23) (5.62)
FMB χ2

λ (×100) 0.51 13.48 1.40
(0.19) (0.05) [0.84]

Betas α β-DOL β-MOOF R̄2

(×100) (×100)
M1 -0.19 1.12 -1.99 0.75

(0.12) (0.03) (0.56)
M2 -0.07 1.01 0.02 0.84

(0.08) (0.02) (0.34)
M3 -0.01 0.98 0.13 0.84

(0.08) (0.02) (0.28)
M4 0.17 0.95 1.08 0.78

(0.10) (0.02) (0.34)
M5 0.28 0.67 1.92 0.64

(0.09) (0.032) (0.39)
Stat. d.f. p-value

Rank(0) 382 10 [0.00]
Rank(1) 25 4 [0.00]

Note: We present SDF and beta representation estimates for the DOL-MOOF model, as well
as portfolio time series regressions and KP reduced-rank tests. The test assets are M1–M5,
the five portfolios sorted on four weeks of lagged currency returns. Other details are provided
in the note to Table 5.
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Table 14: Estimates of the Disaggregated Momentum Order-Flow Model for Financial Cus-
tomers

Asset Managers Hedge Funds
DOL MOAM R2 HJ DOL MOHF R2 HJ

GMM
b 3.68 3.18 0.25 4.82 2.85 2.78 0.73 1.80

(1.20) (1.42) [0.19] (1.20) (1.19) [0.62]
λ (×100) 0.51 8.35 0.53 5.87

(0.20) (3.79) (0.22) (2.51)
FMB χ2 χ2

λ (×100) 0.51 8.35 6.13 0.53 5.87 2.16
(0.19) (3.39) [0.19] (0.19) (2.12) [0.71]

Betas α β-DOL β-MOAM R̄2 α β-DOL β-MOHF R̄2

(×100) (×100) (×100) (×100)
M1 -0.15 1.12 -3.20 0.75 -0.28 1.13 -5.00 0.76

(0.12) (0.03) (1.02) (0.12) (0.03) (0.82)
M2 -0.08 1.01 0.79 0.84 -0.08 1.01 -1.07 0.84

(0.09) (0.02) (0.49) (0.08) (0.0194) (0.56)
M3 -0.02 0.98 0.87 0.84 0.00 0.98 0.90 0.84

(0.08) (0.02) (0.46) (0.08) (0.02) (0.48)
M4 0.17 0.95 1.11 0.78 0.22 0.95 2.80 0.78

(0.10) (0.03) (0.71) (0.10) (0.02) (0.57)
M5 0.26 0.67 2.04 0.63 0.34 0.67 3.26 0.64

(0.09) (0.03) (0.59) (0.09) (0.33) (0.61)
Stat. d.f. p-value Stat. d.f. p-value

Rank(0) 371 10 [0.00] 385 10 [0.00]
Rank(1) 15 4 [0.01] 36 4 [0.00]

Note: We present SDF and beta representation estimates for the momentum order flow
model using disaggregated order flow for financial customers, as well as portfolio time series
regressions and KP reduced-rank tests. MOAM is the momentum order-flow factor for Asset
Managers. MOHF is the momentum order-flow factor for Hedge Funds. See the note to Table
5 for other details.
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Table 15: Estimates of the Disaggregated Momentum Order-Flow Model for Non-Financial
Customers

Asset Managers Hedge Funds
DOL MOCO R2 HJ DOL MOPC R2 HJ

GMM
b 2.29 -12.03 0.36 3.13 2.99 -3.63 0.65 2.32

(1.47) (6.32) [0.37] (1.17) (1.51) [0.51]
λ (×100) 0.52 -5.17 0.53 -2.50

(0.25) (2.70) (0.21) (1.04)
FMB χ2 χ2

λ (×100) 0.52 -5.17 4.91
(0.19) (2.06) [0.30]

Betas α β-DOL β-MOCO R̄2 α β-DOL β-MOPC R̄2

(×100) (×100) (×100) (×100)
M1 -0.20 1.13 5.22 0.74 -0.28 1.13 11.70 0.77

(0.12) (0.03) (2.06) (0.12) (0.03) (1.38)
M2 -0.06 1.01 0.46 0.84 -0.08 1.01 1.89 0.84

(0.08) (0.02) (1.14) (0.08) (0.02) (0.86)
M3 -0.01 0.98 -1.25 0.84 0.00 0.98 -1.16 0.84

(0.08) (0.02) (1.09) (0.08) (0.02) (0.93)
M4 0.17 0.95 -3.92 0.78 0.23 0.95 -7.60 0.80

(0.10) (0.03) (1.35) (0.10) (0.02) (1.01)
M5 0.29 0.67 -2.21 0.63 0.34 0.67 -6.38 0.65

(0.09) (0.04) (1.57) (0.09) (0.03) (1.25)
Stat. d.f. p-value Stat. d.f. p-value

Rank(0) 382 10 [0.00] 391 10 [0.00]
Rank(1) 10 4 [0.03] 54 4 [0.00]

Note: We present SDF and beta representation estimates for the momentum order flow
model using disaggregated order flow for non-financial customers, as well as portfolio time
series regressions and KP reduced-rank tests. MOCO is the momentum order-flow factor for
Corporate customers. MOPC is the momentum order-flow factor for Private Clients. See
the note to Table 5 for other details.
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