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1 Introduction
Modeling the term structure of interest rates using risk factors is a vast and expanding research
frontier in financial economics; see Piazzesi (2010), Gürkaynak and Wright (2012), Duffee (2013)
and Diebold and Rudebusch (2013) for extensive reviews. A large number of papers have fo-
cused on modeling yield dynamics and sought to produce satisfactory forecasting results, such
as Nelson and Siegel (1987), Dai and Singleton (2003), Diebold and Li (2006), Christensen,
Diebold and Rudebusch (2011), Dewachter and Iania (2012), Carriero, Kapetanios and Mar-
cellino (2012) and Joslin, Priebsch and Singleton (2014), among others. The seminal contri-
bution of Nelson and Siegel (1987) and Litterman and Scheinkman (1991) indicates that three
linear factors can capture most of the variation in bond yield data. Diebold and Li (2006)
extend the proposed Nelson-Siegel (NS) model to a dynamic version, and provide improved
predictive power in modeling the yield curve. Joslin, Singleton and Zhu (2011) and Duffee
(2013) conclude that, in the absence of restrictions in factor dynamics, forecasts from models
which impose no-arbitrage restrictions are equivalent to forecasts from unrestricted, reduced-
form econometric models.1 This observation can generalize to reduced-form estimation with
Nelson-Siegel restrictions, where principal component estimates are replaced with NS factors.2
In light of the findings in Joslin, Singleton and Zhu (2011), the key of improving forecasting
performance is to correctly capture the factor dynamics.

In this paper we build upon previous work and propose a term structure model with several
novel features. Firstly, we extend related work by accommodating structural change in our
term structure model and incorporating additional financial information. The global financial
crisis was an abrupt nonlinear shock that highlighted the importance of financial market for
macroeconomic activity and bond yields more generally. Similar to Carriero, Kapetanios and
Marcellino (2012), our macro-finance model combines standard pricing factors with macroe-
conomic and financial factors estimated by a large vector autoregressive (VAR) system with
time-varying coefficients and volatility. The time-varying setup is conducted by the application
of Bayesian econometric techniques. Building on, and extending, Koop and Korobilis (2013)
we develop an efficient Bayesian model that allows us to estimate large systems with many
variables.

Secondly, following a large literature, we include macro risk factors in our reduced-form
specification.3 The seminal work of Ang and Piazzesi (2003) uses inflation, the output gap and
three latent factors to model yields.4 Other authors consider the dynamics of the term structure
augmented with information on exchange rates or survey data; see Anderson, Hammond and
Ramezani (2010), Duffee (2014) and Kim and Orphanides (2012). Dewachter and Iania (2012)
and Dewachter, Iania and Lyrio (2014) successfully model yield dynamics using standard macro
factors plus three additional financial factors: liquidity risk, credit risk and risk premium factors.
This innovative approach can be extended to incorporate a more substantial range of macro-
finance risk factors with modeling techniques that seek to distill large datasets.

Lastly, following Koop and Korobilis (2012) we employ Dynamic Model Averaging (DMA)
1See also Joslin, Le and Singleton (2013), who extend the irrelevance proposition of cross-sectional (no-

arbitrage) restrictions of Joslin, Singleton and Zhu (2011) to higher order state dynamics.
2Nevertheless we test the robustness of core results to the no-arbitrage restrictions. We also compare the

economic gains of our specifications to standard affine term structure models in Section 3.4.
3See for instance Ang and Piazzesi (2003), Bernanke, Reinhart and Sack (2004), Diebold, Rudebusch and

Aruoba (2006), Hördahl, Tristani and Vestin (2006), Bianchi, Mumtaz and Surico (2009), Smith and Taylor
(2009), Bekaert, Cho and Moreno (2010) and Joslin, Priebsch and Singleton (2014).

4The important roles of macro variables, such as price inflation and indicators of real activity, are particularly
emphasized in this paper: the authors show that macro factors can explain up to 85% of the variation in bond
yields.
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methods in order to determine in a data-based way which macro risks are relevant for the yield
curve at different points in time. That is, we use DMA in order to choose, at each point in
time, between three models: i) one with three pricing factors only; ii) pricing factors plus three
key macroeconomic indicators; and iii) pricing factors augmented using up to 15 macro and
financial factors.5 DMA allows us to assign probabilities for each of the models at each point
in time and thus dynamically implement averaging over time. Model averaging methods have
been shown to reduce the total forecast risk associated with using only a single ‘best’ model;
see Avramov (2002), Cremers (2002) and Elliott and Timmermann (2008).

We use our model to empirically examine U.S. term structure dynamics using monthly
observations from 1971 to 2013. Our empirical evidence indicates an extended macro-finance
model is helpful in modeling yield factor dynamics especially in recession periods. We shed
light on the apparent trade-off between incorporating stochastic volatility and fitting the cross-
section of yields in affine term structure models.6 We find that our approach has useful empirical
properties in yield forecasting, as it is robust to parameter and model uncertainty as well
as potential structural breaks. We compare the forecast performance of our approach to a
basic dynamic Nelson-Siegel model and several variants, and show that gains in predictability
are due to the ensemble of salient features – time-varying parameters, stochastic volatility
and dynamic model averaging. Our extended macro-finance model forecasts better than the
benchmarks, especially at short horizons based upon Diebold and Mariano (1995) tests and
predictive likelihoods. Using only conditional information, our approach to modeling the yield
curve provides us with successful term premium alternatives to full-sample estimates of Kim and
Wright (2005), Wright (2011) and Bauer, Rudebusch and Wu (2014), which reveals plausible
expectations of investors in real time. Our estimated term premia shows a significant ‘flight-to-
quality’ demand in the global financial crisis, which distinguishes this crisis from the previous
recessions. A predictable element estimated from our proposed model has strong in-sample and
out-of-sample predictability in terms of future excess bond returns using Clark and West (2007).
For robustness, we compare the economic gains of our proposed model to standard affine term
structure models. We find the predictability of our model is of economic value, based upon the
methodology of Campbell and Thompson (2008).

This paper is structured as follows. Section 2 describes the estimation method and our
framework for modeling bond yield dynamics. Section 3 describes the data discusses the results.
Section 3.3 displays the point and density forecasting performance of our term structure model.
Section 3.3.3 presents robustness checks with arbitrage-free restrictions. Section 3.4 evaluates
the predictability of our proposed model for the excess bond returns and the economic value
of the predictability, when compared to standard affine term structure models. Section 3.5
also shows the model-implied term premia has informative economic implications. Section 4
concludes.

5Our third macro-finance model is like a ‘kitchen sink’ model which fully accounts for, and extends, the point
of Dewachter and Iania (2012) and Dewachter, Iania and Lyrio (2014) that financial factors are important for
modeling yields, whilst allowing for much more information to be incorporated in the spirit of Ludvigson and Ng
(2009).

6Anh and Joslin (2013) indicate no-arbitrage affine term structure models with stochastic volatility perform
poorly in replicating term premia dynamics in the data, because the no-arbitrage assumption provides strong
over-identifying constraints. Creal and Wu (2015) also suggest that in the no-arbitrage framework with constant
parameters, the benefit in fitting volatility is at the expense of fitting the cross-section of yields. Our empirical
results show that the potential evolution of model parameters needs to be taken into account, so less flexible state
dynamics may not be correctly specified to capture the abnormal dynamics of yield factors in recession periods.
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2 Methods

2.1 The Cross-Sectional Restrictions

Following Nelson and Siegel (1987) and Diebold and Li (2006) we assume that three factors
summarize most of the information in the term structure of interest rates. The Nelson and
Siegel (1987) (NS) approach has an appealing structure that is parsimonious, flexible, and
allows for an easy interpretation of the estimated factors. Let yt (τ) denote yields at maturity
τ , then the factor model we use is of the form:7

yt (τ) = LNSt + 1− e−τλNS

τλNS
SNSt +

(
1− e−τλNS

τλNS
− e−τλNS

)
CNSt + εt (τ) , (2.1)

where LNSt is the “Level” factor, SNSt is the “Slope” factor, CNSt is the “Curvature” factor and
εt(τ) is the error term. In the formulation above, λNS is a parameter that controls the shapes
of loadings for the NS factors; following Diebold and Li (2006) and Bianchi, Mumtaz and Surico
(2009), we set λNS = 0.0609. For estimation purposes, we can rewrite the equation (2.1) in the
equivalent compact form,

yt(τ) = B(τ)FNSt + εt(τ),

where FNSt =
[
LNSt , SNSt , CNSt

]′
is the vector of three NS factors, B(τ) is the loading vector

and εt(τ) is the error term.
The Nelson-Siegel restrictions are in fact restrictions on the risk-neutral dynamics. Feunou,

Fontaine and Le (2014) show that the NS model is the continuous time limit of their near
arbitrage-free class with a unit root under the risk-neutral measure. Joslin, Singleton and
Zhu (2011) show that no-arbitrage cross-sectional restrictions cannot improve out-of-sample
forecasts. In light of their findings, we specify the cross-sectional loadings with NS restrictions
and focus on time-series variation of yield factors, in order to improve the forecast performance.

The NS restrictions also imply a setup of Unspanned Macro Risk, if the time series (physi-
cal) dynamics of factors, without imposing any restrictions, are augmented with macro-finance
information. In this setup, the macro variables only affect the unobserved NS factors and do
not interact directly with the observed yields, so that they are unspanned by the yields. In
other words, a ‘knife-edge’ restriction is imposed on the coefficients of macro variables in the
pricing dynamics, while the physical dynamics are left unconstrained, see Joslin, Priebsch and
Singleton (2014) for details.

2.2 Yield Factor Dynamics

In our first step, we use a simple ordinary least squares (OLS) to extract three NS factors.
We assume these factors are observed without errors, which is a standard assumption in term
structure modeling. The interpretation of the Nelson-Siegel factors are of considerable empirical
importance. The Level factor LNSt is identified as the factor that is loaded evenly by the yields of
all maturities. The Slope factor SNSt is equivalent to the spread between short- and a long-term
bond yields, and its movements are captured by placing more weights on shorter maturities.
The Curvature factor CNSt captures changes that have their largest impact on medium-term

7This is an asymptotically flat approximating function, and Siegel and Nelson (1988) demonstrate that this
property is appropriate if forward rates have finite limiting values.
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maturities, and therefore medium-term maturities load more heavily on this factor. In particu-
lar, using the setting λNS = 0.0609, the CNSt has the largest impact on the bond at 30-month
maturity, see Diebold and Li (2006).8

An important novel aspect of our methodology is in modeling the factor dynamics in the
second step. Following Bianchi, Mumtaz and Surico (2009), the extracted Nelson-Siegel factors
augmented with macroeconomic variables follow a time-varying parameter vector autoregression
(TVP-VAR) of order p of the formFNSt

Mt

 = ct +B1t

FNSt−1

Mt−1

+ · · ·+Bpt

FNSt−p

Mt−p

+ vt, (2.2)

where ct are time-varying intercepts, Bit are matrices of time-varying autoregressive coefficients
for i = 1, ..., p, Mt is a vector of macro-finance risk factors, and vt is the error term. Following
Coroneo, Giannone and Modugno (2014) and Joslin, Priebsch and Singleton (2014), we do not
impose any restrictions on the above VAR system.

For the purpose of econometric estimation, we work with a more compact form of Eq. (2.2).
We can show that the p-lag TVP-VAR can be written as

zt = Xtβt + vt, (2.3)

where zt =
[
LNSt , SNSt , CNSt ,M ′t

]′
, Mt is an q × 1 vector of macro-finance factors, Xt = In ⊗[

z′t−1, ..., z
′
t−p

]
for n = q + 3, βt =

[
ct, vec (B1t)′ , · · · , vec (Bpt)′

]′
is a vector summarizing all

VAR coefficients, vt ∼ N (0,Σt) with Σt an n × n covariance matrix. This regression-type
equation is completed by describing the law of motion of the time-varying parameters βt and
Σt. For βt we follow the standard practice in the literature from Bianchi, Mumtaz and Surico
(2009) and consider random walk evolution for our VAR coefficients of the form,

βt+1 = βt + µt, (2.4)

based upon a prior β0 discussed below, and µt ∼ N (0, Qt). Following Koop and Korobilis
(2013) we set Qt =

(
Λ−1 − 1

)
cov (βt−1|Dt−1) where Dt−1 denotes all the available data at time

t− 1 and scalar Λ ∈ (0, 1] is a ‘forgetting factor’ discounting older observations.
The covariance matrix Σt evolves according to a Wishart matrix discount process (Prado

and West (2010)) of the form:

Σt ∼ iW (St, nt) , (2.5)
nt = δnt−1 + 1, (2.6)

ntSt = (nt − 1)St−1 + f
(
v
′
tvt
)
, (2.7)

where nt and St are the degrees of freedom and scale matrix, respectively, of the inverse Wishart
distribution, δ is a ‘decay factor’ discounting older observations, and f

(
v
′
tvt
)

is a specific
function of the squared residuals of our model and explained in the Appendix A.1.

Therefore, we have specified a VAR with drifting coefficients and stochastic volatility which
allows to model structural instabilities and regime changes in the joint dynamics of the NS
factors and the macroeconomic and financial factors. When conducting Bayesian inference
Markov Chain Monte Carlo for example needs to be employed, which can be computationally

8Further discussion of these factors can be found in Appendix B.
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demanding especially in a recursive forecasting context. Here we extend the methodology of
Koop and Korobilis (2013) and conduct an efficient estimation scheme to provide accurate results
while largely speeding up the estimation procedure. We use what is known as a ‘forgetting factor’
or ‘decay factor’ to discount the previous information when updating the parameter estimates;
detailed information of our empirical methodology can be found in Appendix A.1.

2.3 Model Selection

2.3.1 Uncertainty about Macro-Finance Factors

The previous subsection describes the specification of a single time-varying parameter Nelson-
Siegel model. In this paper we argue that the possible set of risk factors, relevant for char-
acterizing the evolution of the yield curve, can change over time. In this case we are faced
with multiple models. In that respect we focus on Eq. (2.3) and we work with three different
specifications: small, medium, and large. The small-size (NS) model only contains the three
yield factors extracted from the Nelson-Siegel model and zero macro variable, i.e. q = 0 in Eq.
(2.3). The middle-size (NS + macro) model includes, in addition to the Nelson-Siegel factors,
Federal Fund Rate, CPI and Industrial Production, so q = 3. The large (NS + macro-finance)
model includes q = 15 macroeconomic and financial variables.

Having three modelsM(i) = 1, 2, 3, in our model space, we use the recursive nature of the
Kalman filter to chose to forecast with a different model at each point in time. That is, for each
t we chose the optimalM(i) which maximizes the probability/weight

π
(i)
t = f

(
MTRUE

t−1 =M(i)|Y t−1
)

under the regularity conditions
∑K
i=1 π

i
t = 1 and πit ∈ [0, 1], and where MTRUE

t−1 is the ‘true’
model at time t−1. We estimate these model weights in a recursive manner, in the spirit of the
Kalman filtering approach. We follow Koop and Korobilis (2013) and define a linear forgetting
prediction step

π
(i)
t|t−1 =

(
π

(i)
t−1|t−1

)α
∑K
i=1

[
µ
(
π

(i)
t−1|t−1

)α] (2.8)

and the updating step

π
(i)
t|t ∝ π

(i)
t|t−1p

(i) (zt|zt−1) . (2.9)

where the quantity p(i) (zt|zt−1) is the time t predictive likelihood of model i, using information
up to time t − 1. This quantity is readily available from the Kalman filter and it provides an
out-of-sample measure of fit for each model which allows us to construct model probabilities.
Finally, 0 < α ≤ 1 is a decay factor which allows to discount exponentially past forecasting
performance, that is, it allows to give exponentially higher weight to most recent observations;
see Koop and Korobilis (2013) for more information. When α → 0 then we have the case of
averaging using equal weights for each model, while when α = 1 the predictive likelihood of
each observation has the same weight which is basically equivalent to recursively implementing
static Bayesian Model Averaging. For all other values between (0, 1) Dynamic Model Averaging
occurs.
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2.3.2 Prior Selection

We define a Minnesota prior for our VAR, which provides shrinkage that could prevent over-
fitting of our larger models. This prior is of the form β0 ∼ N

(
0, VMIN

)
where VMIN is a

diagonal matrix with element VMIN
i given by

VMIN
i =

{
γ/r2, for coefficients on lag r where r = 1, ..., p
α, for the intercept

, (2.10)

where p is the lag length and α = 1. The prior covariance matrix controls the degree of
shrinkage on the VAR coefficients. To be more specific, the larger the prior parameter γ is,
the more flexible the estimated coefficients are and, hence, the lower the intensity of shrinkage
towards zero. As the degree of the shrinkage can directly affect the forecasting results, we allow
for a wide grid for the reasonable candidate values of γ: [10−10, 10−6, 0.001, 0.005, 0.01, 0.05, 0.1].
The best prior γ is selected dynamically according to the forecasting accuracy each value in the
grid generates. That is, following Koop and Korobilis (2013) we select γ for each of the three
models M (i) = 1, 2, 3 and for each time period. Details of this Dyanmic Prior Selection (DPS)
procedure can also be found in the Appendix A.2.

In this paper we also need to calibrate some other free parameters: the NS factor parameter
λNS in Eq. (2.1), forgetting factors Λ in Eq. (A.3), α in Eq. (A.5), and decay factor δ in Eq.
(A.2). We have already mentioned that following Diebold and Li (2006), Bianchi, Mumtaz and
Surico (2009) and Van Dijk et al. (2014) we set λNS = 0.0609. Regarding the forgetting factors
and the decay factor, we follow recommendations in Koop and Korobilis (2013). Intuitively,
these parameters control the discounting of past information, which occurs at an exponential
rate. When these parameters are equal to one, the model becomes a constant parameter model.
Values smaller than one discount past data at a faster rate, allowing faster switches of model
parameters. However, too small values may induce sudden changes to outliers, so the state
space system is not stable and the results will not be reliable. Hence, following Koop and
Korobilis (2013), we choose relatively high values (but less than one) to ensure stability while
still allowing for flexibility: The Λ, α and δ are set to 0.99, 0.99 and 0.95, respectively.

3 Data and Results
This study uses the smoothed yields provided from the US Federal Reserve by Gürkaynak, Sack
and Wright (2007). We also include 3- and 6-month Treasury Bills (Secondary Market Rate).
The empirical analysis focuses on yields with maturities of 3, 6, 12, 24, 36, 48, 60, 72, 84, 96, 108
and 120 months. The key macroeconomic and financial variables that enter our Dynamic Model
Averaging model are obtained from St. Louis Federal Reserve Economic Data (FRED). These
include inflation, real activity indicators, monetary policy tools, as well as the stock market,
exchange rate, house prices and other financial market indicators; the details can be found in
Data Appendix. The full sample is from November 1971 to November 2013 and we use end of
the month yield data. The 1, 3, 6 and 12 months ahead predictions are produced with a training
sample of 38 observations from the start of our sample, up to and including December 1974.
We present the yields’ descriptive statistics in Table 1. As expected the mean of yields increase
with maturity, consistent with the existence of a risk premium for long maturities. Yields have
high autocorrelation which declines with lag length and increases with maturity. The short end
of the yield curve is more volatile than the long end.

Different numbers of macro-finance variables are selected for the three VARs entering our
DMA. As mentioned above, the small-size VAR (NS) does not include any macro or financial
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variables, but only the Nelson-Siegel factors. The middle-size VAR (NS + macro) includes Fed-
eral Fund Rate, inflation and Industrial Production, which are also used in related literature
such as Ang and Piazzesi (2003) and Diebold, Rudebusch and Aruoba (2006). The large VAR
(NS + macro-finance) includes all 15 macro and financial variables, which should comprehen-
sively include the information the market players are able to acquire.

Table 1: Descriptive Statistics of Bond Yields

Mean Std. Dev. Minimum Maximum ρ̂(1) ρ̂(12) ρ̂(30)

3 5.154 3.341 0.010 16.300 0.987 0.815 0.533

6 5.284 3.320 0.040 15.520 0.988 0.827 0.557

12 5.675 3.440 0.123 16.110 0.987 0.842 0.599

24 5.910 3.355 0.188 15.782 0.988 0.858 0.648

36 6.102 3.259 0.306 15.575 0.989 0.868 0.677

48 6.266 3.161 0.454 15.350 0.990 0.873 0.695

60 6.411 3.067 0.627 15.178 0.990 0.876 0.707

72 6.539 2.980 0.815 15.061 0.990 0.877 0.714

84 6.653 2.902 1.007 14.987 0.990 0.878 0.718

96 6.754 2.833 1.197 14.940 0.990 0.878 0.721

108 6.843 2.772 1.380 14.911 0.990 0.878 0.722

120 6.920 2.720 1.552 14.892 0.990 0.877 0.723

Level 7.437 2.379 2.631 14.347 0.989 0.866 0.700

Slope -2.277 1.940 -5.824 4.522 0.954 0.492 -0.114

Curvature -1.424 3.222 -8.948 5.282 0.903 0.634 0.369

Notes: This table presents descriptive statistics for monthly yields at 3- to 120-month maturity, and for the yield
curve Level, Slope and Curvature factors extracted from the Nelson-Siegel model. The sample period is 1971:11–
2013:11. We use following abbreviations. Std. Dev.: Standard Deviation; ρ̂(k): Sample Autocorrelation for
Lag k.

3.1 Evidence on Parameter Instability

In this section we seek to validate the use of time-varying parameter methods. There is a vast
selection of different tests of parameter instabilities and structural breaks in the literature from
both a frequentist and a Bayesian perspective; see for example Chow (1960), Quandt (1960),
Nyblom (1989), Andrews (1993), Andrews and Ploberger (1994), Hanson (2002) and Rossi
(2005). McCulloch (2007) suggests a likelihood-based approach to test parameter instabilities
in a TVP model. The limiting distribution of the test statistics may not be standard and,
consequently, its critical values need to be bootstrapped. In the spirit of McCulloch (2007), we
construct a likelihood-based test on the VAR system of the factor dynamics, using the 1983-2013
sample. We bootstrap 5000 samples to recover the test statistics following Feng and McCulloch
(1996). Based on our test, the null hypothesis that the coefficients of the VAR are constant
over time is rejected at 1% significance level, which means employing the TVP-VAR model is
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appropriate.
However, all the tests mentioned above are in-sample tests and fail to provide evidence con-

cerning out-of-sample instabilities. Therefore, instead of explicitly specifying a test of parameter
instability we follow a different strategy. First, note that in the case of our model specified in
Section 2, the constant parameter Nelson-Siegel model can be obtained as a special case of our
proposed time-varying specification, that is it is nested.9 Since our ultimate purpose is to obtain
optimal forecasts of the yield curve, “testing” for parameter instability can conveniently boil
down to a comparison of predictability between the TVP-VAR and a constant parameter VAR.
We employ the test proposed by Diebold and Mariano (1995) and evaluate the predictability of
competing models across four forecast horizons (h = 1, 3, 6, 12 months) and at all twelve of our
maturities. The p-values of the tests are reported in Table 2, which correspond to the test of
the null hypothesis that the competing TVP-VAR model has equal expected square prediction
error relative to the benchmark forecasting model constant parameter VAR (i.e. Diebold and
Li (2006)), against the alternative hypothesis that the competing TVP-VAR forecasting model
has a lower expected square prediction error than the benchmark forecasting model. Table 2
indicates the TVP-VAR consistently outperforms the constant parameter VAR. The test statis-
tic rejects the null for most of the maturities, and especially at longer forecast horizons, so the
time-varying parameter model should be preferred as it can provide more robust estimates.

Table 2: Parameter Instability Test

P-Values: TVP-VAR vs. VAR

Maturity 3 6 12 24 36 48 60 72 84 96 108 120

h = 1 0.02 0.00 0.54 0.14 0.02 0.00 0.00 0.00 0.01 0.08 0.33 0.68

h = 3 0.03 0.01 0.13 0.04 0.01 0.01 0.00 0.01 0.02 0.05 0.13 0.28

h = 6 0.00 0.00 0.04 0.02 0.01 0.01 0.01 0.01 0.02 0.04 0.08 0.16

h = 12 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03

Notes: 1. This table reports the statistical significance for the relative forecasting performance, based on
the Diebold and Mariano (1995) test. We conduct 1, 3, 9 and 12 months ahead forecasts for bond yields at
maturities ranging from 3 months to 120 months. The predictive period is between 1983:10 and 2013:11.
2. Statistical significance for the relative MSFE statistics is based on the p-value for the Diebold and Mariano
(1995) statistic; the statistic corresponds to the test of the null hypothesis that the competing TVP-VAR model
has equal expected square prediction error relative to the benchmark forecasting model constant parameter
VAR (i.e. Diebold and Li (2006)), against the alternative hypothesis that the competing forecasting model has
a lower expected square prediction error than the benchmark forecasting model.

To highlight the importance of the TVP feature, we set out the persistence of the physical
factor dynamics over time in Figure 1. This can be be examined by considering the behavior of
the eigenvalues. We can detect significant changes in all eigenvalues, which reflects indispensable
changes in the persistence of pricing factors over time. The first eigenvalue is relatively more
stable than the other two, while there is a clear rising trend for the third eigenvalue. Moreover,
we find that the second and third eigenvalues have important changes in near recession periods,
which is connected to the shifting dynamics of Slope and Curvature factors.

9In particular, as Koop and Korobilis (2013) show, by setting the forgetting and decay factors Λ = δ = 1,
then βt and Σt remain constant over the sample t = 1, ..., T .
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Figure 1: Time-Varying Persistence of Physical Dynamics

Notes: The graph shows the largest three eigenvalues of the physical dynamics in the TVP model. The shaded
areas are recession periods according to the NBER Recession Indicators.

3.2 Model Dynamics

In our Bayesian empirical analysis of the factor dynamics, we begin by selecting priors with
Dynamic Prior Selection (DPS), then the best prior will be selected for each of the three VAR
models. Next we update the model weights with Dynamic Model Averaging (DMA), and finally
we update on the parameters using a Bayesian Kalman filter.

In the DPS step, we find that the best prior γ value in Eq. (2.10) is stable, i.e. fixed at
0.1, for all three VAR models, given the forgetting factor α = 0.99. To ensure robustness,
we decrease the values of α, as it controls the persistence of probabilities.10 As α decreases
the results do not change substantially: the best γ values is typically 0.1 for all three sizes
of models. The evidence concludes that a relatively flexible and consistent prior can generate
more accurate yield forecasts. For simplicity and tractability, we fix the value at γ = 0.1, and
therefore the DPS procedure could be skipped in the following analysis. In fact, we find that
holding γ constant at 0.1 slightly improves the forecasts, possibly due to the fact that fixing
γ reduces posterior parameter uncertainty which in turn can affect uncertainty of posterior
predictive densities.

Graphical evidence of the usefulness of our approach is provided by Figure 2, which sets
out the weights of the small, medium and large VAR models used in DMA. In general, the
more parsimonious version of the NS model is preferred, however, additional macro-finance in-
formation becomes important during macroeconomic recessions or bear markets. The following
empirical observations are of economic importance:

Firstly, during recession periods, the approach tends to use more macro-finance information
to generate forecasts. For instance, immediately before the financial crisis, the probability of

10In Appendix C, Figure 9 shows the prior selection results with different values of the forgetting factor.
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the large-size (macro-finance) model rose steeply and then stayed at a high level throughout
the whole crisis period, as indicated by the higher weights for the small NS model in Figure
2. In times of acute economic stress, macroeconomic and financial risk factors become more
relevant for modeling yields, which is closely related to the ‘financial accelerator’ argument by
Bernanke, Gertler and Gilchrist (1996).11 The macro-finance model also displays considerable
variability in importance, as displayed by the volatility of the probabilities in Figure 2.

Secondly, the small-size NS model generally has relatively high probability in the DMA
except during recession periods. This is consistent with the viewpoint that only information
from the bond market is used in pricing and predicting bond yields. It explains the effectiveness,
at least during non-recession periods, of parsimonious yield curve models, such as Dai and
Singleton (2003) and Diebold and Li (2006).

Thirdly, the probability of the medium-size (NS + macro) model is comparable to the small-
size model since 1980s. This is consistent with the idea that macro variables are important in
determining yields since the start of ‘Great Moderation’, due to an active central bank, see Ang
and Piazzesi (2003) and Bianchi, Mumtaz and Surico (2009).

Lastly, it seems that there is a slightly upward trend for the large macro-finance VAR since
1970, which implies that the agents tend to incorporate more and more macro and financial
information when making investment decisions. This feature is consistent with the observation
in Altavilla, Giacomini and Ragusa (2014) that the original version of the dynamic NS model
without macro information has weaker predictive power in recent years.

11This may also be explained by the construction in Fontaine and Garcia (2012): In the financial crisis, the ar-
bitrageurs that use bond-market information only are capital-constrained and hence have funding stress, whereas
the agents concerning more about macroeconomy and the whole financial condition, for example, the government,
step in and drive the market. Hu, Pan and Wang (2013) have a related argument that the arbitrageurs help
align the yields across maturities in normal periods but the pricing errors can be persistently high when arbitrage
capital is low. These conjectures need to be confirmed with further evidence.
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Figure 2: Model Weights for NS, NS plus Macro and NS plus Macro-Finance VAR Models

Notes:
1. This figure sets out the time-varying probabilities of our three models in our Dynamic Model
Averaging (DMA) approach. The probabilities for DMA are updated from a Kalman filter based
on the predictive accuracy, see Eq. (A.6); the probabilities/weights of the VAR models sum up
to 1. These updated estimates are smoothed using a 6-month moving average.
2. The three models are as follows. The small VAR contains the Nelson-Siegel (NS) factors. The
medium VAR contains NS plus macro factors. The large VAR contains NS plus macro-finance
factors.
3. The shaded areas the recession periods based on NBER Recession Indicators.

3.3 Forecasting Performance

We use the Nelson-Siegel Dynamic Model Averaging (NS-DMA) model to predict the yields in a
two-step estimation procedure. The first stage is using the Kalman filter to generate predictions
of the three Nelson-Siegel yield factors with macro variables, with the addition of DMA. That is,
we use Eq. (2.3) with the predicted βt+1 to forecast our factors. The second stage is forecasting
the yields with the predicted NS factors and the fixed NS loadings. The macro variables are not
directly used to predict the yields in the second step, due to the consideration of Unspanned
macro risks. The point forecasts of NS-DMA are compared to the realized yields across all
maturities, and we also compute the predictive log-likelihood of forecasting models to evaluate
the density forecasts. In terms of density forecasts, the comparison exercise using predictive
likelihoods is similar to Geweke and Amisano (2010). The predictive duration is from 1983:10
to the 2013:11.

To better evaluate the predictive performance of NS factors and, hence, yields, we have
the following seven benchmark models to compare with NS-DMA/DMS: Random Walk (RW)
model, recursive estimation of factor dynamics using standard VAR following Diebold and Li
(2006) (DL), 10-year rolling-window VAR estimations (DL-R10), recursive VAR estimation
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with three macro variables (DL-M), recursive estimations of standard VAR with macro prin-
cipal components following Stock and Watson (2002) (DL-SW), time-varying parameter VAR
estimations of factor dynamics without macro information (TVP) and time-varying parameter
VAR estimations of factor dynamics with three macro variables (TVP-M).

Among all competing models, the RW model is a challenging benchmark. DL is the two-
step forecasting model proposed by Diebold and Li (2006), which recursively estimates the
factor dynamics using a standard VAR. In other words, DL estimates the VAR model of factors
recursively with historical data, extending through all the following periods. We have four
variations of the DL model: 10-year rolling-window estimations (DL-R10); recursive estimations
with three macro variables of Fed Fund Rate, Inflation and Industrial Production (DL-M); and
recursive estimations with three principal components of our whole macro-finance dataset (DL-
SW). In the DL-SW model, three macro principal components are drawn using the method
proposed by Stock and Watson (2002) to augment DL. Lastly, we include two extensions of DL
using a time-varying parameter VAR without macro information and a time-varying parameter
VAR with three macro variables to characterize the factor dynamics, denoted TVP and TVP-M,
respectively; the latter is essentially the model estimated in Bianchi, Mumtaz and Surico (2009)
using MCMC methods.

3.3.1 Point Forecasts

Table 3 displays the 3-period ahead Mean Squared Forecasting Error (MSFE) Performance
for all forecasting models. The core empirical results are very encouraging. As can be seen
in Table 3, our preferred NS-DMA approach consistently outperforms the toughest of all our
benchmark models. That is to say, the NS-DMA has a lower MSFE than the RW for nine of
twelve maturities in the 3-month ahead forecasts.

Even at relatively long forecast horizons, the NS-DMA also performs better than the RW
in average.12 In terms of density forecasts, the log-likelihood of NS-DMA is systematically the
highest among all forecasting models, see Table 7. Among all models, NS-DMA is the only one
comparable to, or better than, the RW. It is worth noting that the rolling-window forecasts
perform much less favorably. In addition, the predictability of DL-SW is not satisfactory.
The macro principal components alone cannot provide useful information in terms of yield
forecasting, since the method fails to exclude irrelevant information in a time-varying manner.
Hence this result indicates the relative advantages of NS-DMA as a variable shrinkage method
in forecasting.

Remarks on Predictive Gains Since the pricing dynamics are constrained by the NS re-
strictions, we conclude that the predictive gains are purely from the physical dynamics especially
by taking parameter and model uncertainty into account. Here we would like to highlight differ-
ent sources of predictive gains. As mentioned in the last section, the last four columns in Table 7
or 3 set out the predictive performance of constant-parameter models without stochastic volatil-
ity, which perform consistently worse than TVP models, no matter whether we include macro
information or not. In contrast, our TVP models with stochastic volatility in the third and
fourth columns provide significant gains in predictive performance, as they put more weights on
the current observations and hence are robust to parameter uncertainty and structural changes.
Moreover, introducing an extra layer of model uncertainty is also essential in improving fore-
cast performance. It helps us properly incorporate macro-finance information in a time-varying
manner, which is related to the ‘scapegoat theory’ by Bacchetta and Van Wincoop (2004).

12More forecasting results are shown in Appendix C.
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Table 3: Three-Month Ahead Relative MSFE of Term Structure Models

MA NS-DMA DMS TVP TVP-M DL DL-R10 DL-M DL-SW

3 0.765† 0.873 0.864 0.845 1.105 1.514 1.070 1.795

6 0.863† 0.976 0.976 0.997 1.305 1.646 1.283 1.907

12 0.931† 1.003 0.997 1.019 1.131 1.231 1.119 1.727

24 0.988† 1.046 1.062 1.068 1.255 1.390 1.249 1.537

36 1.002† 1.044 1.073 1.060 1.295 1.482 1.292 1.358

48 1.006† 1.037 1.069 1.049 1.294 1.528 1.293 1.246

60 1.006† 1.032 1.063 1.043 1.269 1.539 1.272 1.196

72 1.005† 1.030 1.057 1.041 1.233 1.525 1.239 1.189

84 1.002† 1.029 1.053 1.044 1.190 1.488 1.201 1.207

96 0.999† 1.031 1.050 1.049 1.146 1.431 1.160 1.238

108 0.996† 1.033 1.049 1.055 1.102 1.360 1.120 1.272

120 0.994† 1.035 1.048 1.061 1.062 1.283 1.083 1.302

Mean 0.969† 1.018 1.035 1.032 1.205 1.449 1.205 1.405

Notes: 1. This table shows 3-month ahead forecasts of bond yields with maturities ranging from 3 months to
120 months. The predictive duration is from 1983:10 to 2013:11.
2. We report the ratio of each models Mean Squared Forecast Errors (MSFE) relative to Random Walk MSFE,
and the preferred values are in bold. The dagger (†) indicates, in terms of the sum of predictive log-likelihood,
the model has the preferred value among all models at certain maturities (or in total), see Geweke and Amisano
(2010) for details.
3. In this table, we use following abbreviations. MA: Maturity (Months); MSFE: Mean Squared Forecasting
Error; Mean: Averaged MSFE across all sample maturities. In our proposed Nelson-Siegel (NS) framework,
DMA (Dynamic Model Averaging) averages all the models with probabilities in each step, while DMS (Dynamic
Model Selection) chooses the best model with the highest probability at any point in time. TVP: a time-
varying parameter model without macro information; TVP-M: a time-varying parameter model with three
macro variables: fund rate, inflation and industrial production, similar to Bianchi Mumtaz and Surico (2009) but
estimated with a fast algorithm without the need of MCMC; DL: Diebold and Li (2006) model, i.e. constant
coefficient Vector Autoregressive model with recursive (expanding) estimations; DL-R10: Diebold and Li (2006)
estimates based 10-year rolling windows; DL-M: factor dynamics in Diebold and Li (2006) are augmented with
three macro variables: fund rate, inflation and industrial production, using recursive estimations; DL-SW: factor
dynamics in Diebold and Li (2006) are augmented with with three principal components (see Stock and Watson
(2002)) of our macro/finance data, using recursive estimations; RW: Random Walk.
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From the first two columns, we find further improvement over the TVP models if we allow for
both parameter and model uncertainty. Hence, we believe that the ensemble of these salient
features – time-varying parameters, stochastic volatility and model averaging/selection, is the
key to properly incorporate macro-finance information and hence can provide significant gains
in predictability.

To formalize the above arguments, we conduct a statistical test to evaluate the out-of-sample
forecasting performance. In Table 4 we show results of the Diebold and Mariano (1995) test, in
order to evaluate the forecasting performance of NS-DMA relative to DL, TVP-M and Random
Walk. The Diebold and Mariano (1995) statistic is also used by Diebold and Li (2006) and
Altavilla, Giacomini and Ragusa (2014). The relative MSFE is shown for forecasting horizons
1, 3, 6 and 12 months. This shows that the NS-DMA clearly outperforms the DL and TVP-M,
though it only has statistical significance relative to the RW at shorter maturities. Therefore,
we consider the short rate forecast from the NS-DMA model to be satisfactory. In general,
the predictive performance of NS-DMA in some medium-term maturities is weaker, which we
interpret as a possible suggestion that some additional forward-looking information may be
needed to better capture the movements of the hump-shape Curvature factor.
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Table 4: MSFE from NS-DMA Relative to Other Models

NS-DMA vs. DL NS-DMA vs. TVP-M NS-DMA vs. RW

Maturity h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

3 0.833*** 0.693*** 0.653*** 0.843*** 0.995 0.906* 0.860* 0.790** 0.706*** 0.765*** 0.871* 1.028

6 0.766*** 0.661*** 0.655*** 0.846*** 0.901** 0.865** 0.845** 0.800** 0.818** 0.863** 0.947 1.054

12 1.045 0.824** 0.743*** 0.866*** 0.961** 0.914** 0.897* 0.847** 0.971 0.931* 0.969 1.031

24 0.939** 0.788*** 0.735*** 0.849*** 0.943*** 0.925** 0.927* 0.890* 1.000 0.988 1.025 1.055

36 0.870*** 0.774*** 0.733*** 0.845*** 0.952*** 0.945** 0.952 0.918 0.977 1.002 1.038 1.063

48 0.854*** 0.777*** 0.740*** 0.842*** 0.963** 0.959* 0.967 0.934 0.965 1.006 1.038 1.061

60 0.864*** 0.793*** 0.754*** 0.844*** 0.967** 0.965* 0.973 0.939 0.965 1.006 1.032 1.054

72 0.886*** 0.815*** 0.773*** 0.846*** 0.965** 0.965* 0.971 0.936 0.971 1.005 1.021 1.048

84 0.914*** 0.842*** 0.794*** 0.849*** 0.959** 0.960* 0.965 0.928 0.982 1.002 1.009 1.041

96 0.947** 0.872** 0.819** 0.851*** 0.951** 0.953** 0.955 0.918 0.996 0.999 0.997 1.032

108 0.978* 0.904** 0.845** 0.854*** 0.945*** 0.944** 0.946 0.907 1.009 0.996 0.987 1.019

120 1.004 0.936 0.872* 0.860*** 0.941*** 0.937*** 0.937 0.897 1.020 0.994 0.978 1.007

Notes: 1. This table reports MSFE-based statistics of NS-DMA forecasts of bond yields at maturities ranging from 3 months to 120 months, relative to the
forecasts of Diebold and Li (2006) (DL), TVP-M (similar to Bianchi Mumtaz and Surico (2009)) or Random Walk (RW). The predictive period is between 1983:10
and 2013:11.
2. Statistical significance for the relative MSFE statistics is based on the p-value for the Diebold and Mariano (1995) statistic; the statistic corresponds to the test
of the null hypothesis that the competing NS-DMA model has equal expected square prediction error relative to the benchmark forecasting model (DL, TVP-M or
RW) against the alternative hypothesis that the competing forecasting model has a lower expected square prediction error than the benchmark forecasting model.
*, ** and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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One interesting observation about the NS-DMA is that at longer forecast horizons (e.g. 12-
month ahead) its performance is better for long-term yields, while for shorter forecast horizons
(e.g. 1-month ahead) the model provides more accurate forecast of short yields. In general,
the long-term yields have lower volatility so their forecasts tend to be stable. In contrast, short
yields are anchored by the policy rates. This fact implies that short-term forecasts of short
yields are accurate as long as monetary policy is predictable in the short run. However, without
further information, forecasts of short yields at longer forecast horizons are poorer, given that
the monetary policy target or expectations may change in the long run. In comparing our results
to the existing literature, Diebold and Li (2006) beat a random walk using the Diebold-Mariano
test at 12-month forecast horizon and for shorter maturities. However, Diebold and Rudebusch
(2013) and Altavilla, Giacomini and Ragusa (2014) imply reduced ability of NS models to beat
the RW in recent years. We consistently improve upon DL across all horizons and maturities,
which is confirmed by Relative MSFEs, predictive log-likelihoods, and the Diebold-Mariano
test.

Predictive Performance over Time Figure 3 shows 6-month ahead Squared Forecasting
Errors of DMA, DL and RW across the whole out-of-sample forecast period. It is evident that
the DMA significantly and consistently outperforms the DL across all maturities, and the RW
at shorter maturities. Benchmark models perform much worse around recessions, while the
NS-DMA model has stable performance due to its ability to account for parameter and model
uncertainty.

3.3.2 Density Forecasts and Time-Varying Volatility

It has been indicated by Bianchi, Mumtaz and Surico (2009) that homoskedasticity is a frequent
and potentially inappropriate assumption in much of the macro-finance literature. Cieslak and
Povala (2015) show that stochastic volatility can have a non-trivial influence on the conditional
distribution of interest rates. Piazzesi (2010) indicates that fat tails in the distribution of bond
factors can be modeled by specifying an appropriate time-varying volatility. The NS-DMA
model allows for heteroskedastic variances and this assumption is crucial for its good density
forecast performance; this evidence is consistent with Hautsch and Yang (2012). The cumulative
sum of predictive log-likelihood which is displayed in Figure 4 shows that the predictive density
of the NS-DMA is more accurate compared to the predictive density of the DL across all
maturities, especially for short rates.

The NS-DMA not only provides more sensible results in terms of density forecasts, but also
captures the desirable evolutionary dynamics of the economic structure. Figure 5 shows the
time-varying second moments of 3 month ahead forecasts from the NS-DMA model. The figure
displays distinct time variation in the evolution of volatility. The stable decline of volatility
before the financial crisis matches the conclusions of Bianchi, Mumtaz and Surico (2009), who
refer to this empirical result as the ‘Great Moderation’ of the term structure. We observe
that yields with longer maturities have lower volatilities. This feature is counter-intuitive.
Theoretically, long yields are mainly driven by three components: the expected future (real)
short yields; inflation expectations; and the term premia. Inflation expectations may change
abruptly and frequently during a short period of time, so do the expected future short yields. At
the same time, term premia can also be quite volatile. Therefore, summing up the movements
of these three components, the variance of long yields should be larger than the short yields;
nevertheless, the empirical result implies the opposite. As indicated in Duffee (2011b), the
reason causing this result is that the factor driving up the expected future short yields or
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Figure 3: Squared Forecasting Error for Yields of 3-, 12-, 60- and 120-Month Maturities

Notes: 1. These are 6 months ahead Squared Forecasting Errors for predicted yields from early 1983 to late
2013. From top left clockwise we have maturities of 3, 12, 60 and 120 months. The models present here are
DMA (solid), Diebold-Li (dashed and dotted) and RW (dashed).
2. The first two graphs show the errors for yields of maturities 3 and 12 months, in which the DMA
significantly outperforms the DL and RW.
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Figure 4: Cumulative Sum of Predictive Log-Likelihood of 3-, 12-, 60- or 120-Month Maturities

Notes: These are 1-month ahead cumulative sum of predictive log-likelihood for predicted yields from early
1975 to late 2013. From top left clockwise we have maturities of 3, 12, 60 and 120 months. The models present
here are DMA (solid), DMS (dotted) and Diebold-Li (dashed). A higher log-likelihood implies improved density
predictability.
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inflation expectations may drive down the term premia, thus, offsetting the variation in these
components.

Figure 5: Time-Varying Second Moment

Notes: These are time-varying second moments of 3 months ahead forecasts for bonds at maturities 6, 36, 60
and 120 months, from early 1975 to late 2013. The variance of NS factors is estimated from Eq. (A.2), and
then the variances of yield forecasts generated by each candidate model in the NS-DMA, can be easily
calculated as linear combinations of factor variances.

From the perspective of time dimension, the volatilities of yields (especially shorter-term)
are high in the 1980s, while the bond yield level is also relatively high. The high volatiities are
due to large forecast variances of forecast models as well as a high degree of forecast dispersion
in forecasts. It is clear that the volatilities are declining during the Great Moderation, and
therefore the variances of bond forecasts are rather small between 1990 and 2007, except during
the 2004-05 episode of ‘Greenspan’s Conundrum’. In around 2009, the volatilities surge to a
high level since the 1990’s, although the short yields stay at a relatively low level (restricted
by the zero lower bound) among all periods. Even after the financial crisis, ambiguity in yield
forecasts still exists as the volatilities remain at a relatively high level.

20



3.3.3 Robustness: Do We Need Strict Arbitrage-Free Restrictions?

As we have discussed in Section 2, we impose NS restrictions on the pricing dynamics and leave
the physical dynamics unconstrained. By allowing for parameter and model uncertainty in the
physical dynamics, we are able to acquire significant predictive gains. The sources of these gains
are also revealed in the last section.

Our NS-DMA approach does not explicitly impose ‘hard’ arbitrage-free restrictions.13 The
reason is that our focus here is not on the dynamic structure of market price of risks. Duffee
(2014) indicates that the no-arbitrage restrictions are unimportant, if a model aims to pin down
physical dynamics but not equivalent-martingale dynamics that specify the pricing of risk. In
order to capture expectations of investors, we aim to improve forecasts of the interest rate term
structure. Joslin, Singleton and Zhu (2011) show that no-arbitrage cross-sectional restrictions
are irrelevant for out-of-sample forecasts if the factor dynamics are unrestricted.14

To ensure the robustness of our NS-DMA approach, we extend the three-factor arbitrage-
free Nelson-Siegel model proposed by Christensen, Diebold and Rudebusch (2011) and evaluate
the forecast performance of the arbitrage-free version of NS-DMA.15 The forecast performances
of two models are very close, which implies that the NS-DMA is almost arbitrage-free, which
is consistent with theoretical evidence in Feunou, Fontaine and Le (2014) and Krippner (2015)
that the NS models are near arbitrage-free. Hence, following Duffee (2014), we choose not to
impose arbitrage-free restrictions to avoid potential misspecification.

3.4 Economic Evaluation

3.4.1 Predictability of Excess Returns

Term premia are closely related to the real economy. The behavior of investors is influenced by
their future expectations, which can be reflected in the term premia. Harvey (1988) indicates
that agents tend to buy long-term assets in ‘good’ times in order to smooth their consumption
during ‘bad’ times, and, hence, long yields decline causing the negative term premia. It is
also noted in Kim (2009), risk-aversion could vary with the business cycle. Close to recessions,
agents tend to consider bonds to be an ‘insurance’ against falling consumption levels in the
downturn. During recession periods, agents may have heterogeneous expectations about the
future, and they may reallocate their assets frequently. As a consequence, the level of term
premia is affected by the behavior of the agents.

Therefore, investors’ decisions are governed by expectations of future returns. Particularly,
an investor may select different strategies according to different forecasts, in order to maximize
expected excess returns. Based on a weak form of the Expectation Hypothesis, term premia
should be constant; therefore an investor who favors the Expectation Hypothesis, chooses the
historical average of excess holding period returns of bonds as the future forecasts.16 In contrast,

13From a theoretical perspective, Filipović (1999) and Björk and Christensen (1999) show that the Nelson-
Siegel family does not impose the restrictions necessary to eliminate opportunities for riskless arbitrage. From
a practical perspective, our implementation allows all bond yields to be priced with errors, which naturally
breaks their original assumptions of the Nelson-Siegel family in their papers. Therefore, the potential loss of not
imposing arbitrage-free restrictions may be mitigated.

14In practice, the arbitrage-free restrictions are not important in terms of forecasting in models assuming bond
yields are priced with errors, see for example, Coroneo, Nyholm and Vidova-Koleva (2011) and Carriero and
Giacomini (2011).

15The key difference between arbitrage-free NS-DMA and NS-DMA is an ‘yield-adjustment term’, which only
depends on the maturity and factor volatility. See Christensen, Diebold and Rudebusch (2011) and Diebold and
Rudebusch (2013) for more details.

16The construction is similar to Thornton and Valente (2012) and Zhou and Zhu (2014).
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alternative term premia estimates (e.g. NS models, affine term structure models etc) will
eventually affect portfolio formation.

Formally, we assume an investor forms the expectations of h-period (month) ahead excess
returns using the following model:

rt+h = αm + βmxt,m + εt+h, (3.1)

where rt+h is the excess bond return after h months, xt,m is the independent variable, εt+h is the
error term and αm and βm are parameters. Following Cochrane and Piazzesi (2005) and Duffee
(2011a), we calculate 3-, 6-, 9- and 12-month excess holding period returns of 2- to 10-year
bonds at time t as rt using Eq. (E.4). If we have a model that can generate time-varying term
premia, then it is straightforward to obtain xt,m, see Appendix E.1 for detailed derivations.

For the Expectation Hypothesis investor, the model of h-period ahead forecasts is a restricted
version (β = 0)

r̄t+h = α̂m, (3.2)

where α̂m is the historical mean of excess bond returns up to and including time t.
For the investor using another forecasting model j, the forecast of future excess returns is
r̂j,t+h = α̂m + β̂mxt,m, (3.3)

where α̂m and β̂m are the ordinary least squares (OLS) estimates of αm and βm in Eq. (3.1).
We generate h-month-ahead out-of-sample forecasts of excess bond returns using a recursive
expanding window. We calculate the predictable element for each model by regressing the
expected excess holding period return on a constant.17 The errors of these regressions are used
as independent variables xt,m, which can help evaluate the predictability of different models
and the robustness of Term Premia estimates.

To compare the predictive performance of our forecasting models against the EH bench-
mark, we have two groups of candidates. The first group includes the predictable elements
estimated from the smoothed NS-DMA (denoted NS-DMA*) conditional on the information of
the whole sample, as well as the models proposed by Bauer, Rudebusch and Wu (2014) and
Wright (2011).18 Specifically, we estimate the NS-DMA* by conducting backward smoothing
conditional on the information of the whole sample.19 That is, we consider in-sample forecasts
of excess returns r̂j,t+h where j = 1, 2, 3, based upon NS-DMA*, BRW and Wright. We then
consider the out-of-sample group, which includes the predictable elements estimated from the
NS-DMA and DL (Diebold and Li (2006)), and the recursively estimated forward rate factor
proposed by Cochrane and Piazzesi (2005) (denoted CP);20 in this group we only use the infor-
mation up to and including time t to obtain the variables, so it is a true out-of-sample forecasting
exercise. After obtaining the predictable elements estimated from the candidate term structure
models, each time we use one model-implied predictable element as the independent variable
when forecasting the excess returns. Therefore, in addition to the EH forecasts r̄t+h, we have in

17In our recursive estimation, the implementation is equivalent to subtracting the calculated expected excess
holding period return from its historical mean, see Eq. (E.9).

18See Appendix E.1 for technical details. We use the whole sample to estimate the implied term premia of
Bauer, Rudebusch and Wu (2014) (BRW) and Wright (2011) because the maximum likelihood estimation of
these two models may fail to converge with subsamples. This is an in-sample forecasting as an extra layer of
forward-looking information is introduced when estimating the parameters. This may bring about more significant
performance but may not correctly reflect the true conditional expectations of investors as the information of
realized expectations is contained.

19We use Rauch-Tung-Striebel (RTS) smoother, see Appendix A.3.
20Cochrane and Piazzesi (2005) show that the CP factor has significant predictive performance for the 1-year

holding period excess returns. The CP factor in our implementation is recursively constructed using one-year
yield and 2- to 10-year forward rates.
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total five kinds of excess return forecasts denoted as NS-DMA*, BRW, Wright, NS-DMA, DL
and CP.

If the Expectation Hypothesis holds, the implied term premia and the future excess returns
should be constant. Hence the forecasting models based on Eq. (3.3) should not have higher
predictive power than the Expectation Hypothesis model Eq. (E.8). Otherwise, the expectation
of excess bond returns is time-varying, and the model-implied term premia at time tmay provide
useful information in forecasting the excess bond returns at time t+ 1 and forward.

We evaluate the forecasting performance of the models using out-of-sample R2, R2
OS , pro-

posed by Campbell and Thompson (2008),

R2
OS = 1−

∑T
t=1(rt − r̂j,t)2∑T
t=1(rt − r̄t)2

(3.4)

where r̂j,t is the fitted value from a predictive regression model j estimated through period
t − h , and r̄t is the historical average return estimated through period t − h. If the R2

OS is
positive, then the predictive regression has lower average mean-squared prediction error than
the historical average return.21 Formally, we test the null hypothesis that R2

OS ≤ 0 against
the alternative hypothesis that R2

OS > 0. We employ the statistic developed by Clark and
West (2007) to evaluate the significance of the out-of-sample forecasts. Clark and West (2007)
adjust the statistic of Diebold and Mariano (1995), as the previous version has a nonstandard
distribution when comparing forecasts from nested models. When setting βt,m in Eq. (3.3) to
zero we have the historical mean model, so using the MSPE-adjusted statistic of Clark and West
(2007) is more appropriate here. To sum up, in this section we mainly discuss the statistical
evaluation, and we will proceed with the discussion about economic evaluation in the next
section.

3.4.2 Economic Value

The above evaluation of out-of-sample predictability does not consider the risk borne by an in-
vestor. It raises the issue of economic value of a forecasting model, as statistical significance does
not measure its economic significance. This section evaluates whether the model predictability
is sufficiently large to be of economic value to risk averse investors. Following Campbell and
Thompson (2008), Welch and Goyal (2008), and Rapach, Strauss and Zhou (2009), we assume
each investor, who is small and hence with no market impact, chooses portfolio weights based
on the return forecasts. In this paper, we assume the investor only has two assets for selection:
the short-term (1-year) and long-term (2 to 10 years) bonds. We then calculate realized utility
gains for a mean-variance investor on a real-time basis.

To demonstrate the evaluation of the above strategies, we firstly discuss the case of an
Expectation Hypothesis (EH) investor. We can compute the average utility for the mean-
variance investor with relative risk aversion parameter γR who allocates his or her portfolio
monthly between the short-term and long-term bonds using forecasts of the excess returns based
on the historical average. This exercise requires the investor to forecast the variance of excess
returns. Following Campbell and Thompson (2008), we assume that the investor estimates the
variance σ̂2

t+1 using a 5-year rolling window using monthly data of excess annually returns. A
mean-variance investor who forecasts the excess bond returns using the historical average r̄t+1

21Clark and West (2006) indicate that the expected out-of-sample R2 under the null of unpredictability is
negative for series that are truly unpredictable, because in a finite sample the predictive regression will on
average have a higher mean squared prediction error as it must estimate an additional coefficient. In contrast,
the positive out-of-sample R2 can be interpreted as evidence for predictability.
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will decide at the end of period t to allocate the following share of his or her portfolio to bonds
in period t+ 1:

w0,t = ( 1
γR

)( r̄t+1
σ̂2
t+1

) (3.5)

where σ̂2
t+1 is the 5-year rolling-window estimate of the variance of excess returns.22

Over the out-of-sample period, the average of the realized utility of the investor is given by

v̂0 = µ̂0 − (1
2)γRσ̂2

0 (3.6)

where µ̂0 and σ̂2
0 are respectively the sample mean and variance of the excess holding period

returns on the benchmark portfolio of the EH investor, which is constructed using forecasts of
the excess returns based on the historical average.

Similarly, we can calculate the average utility for the same investor, when his or her decision
is made by using a model to forecast the excess bond returns. The share chosen by the investor
is

wj,t = ( 1
γR

)( r̂j,t+1
σ̂2
t+1

) (3.7)

where r̂j,t+1 is the excess return forecast from model j. The resulting realized average utility
level is

v̂j = µ̂j − (1
2)γRσ̂2

j (3.8)

where µ̂j and σ̂2
j are the sample mean and variance of the excess holding period returns on the

portfolio indexed by j. The investor forms the portfolio j using forecasts of the excess returns
of bonds according to the jth forecasting model.

We can compute the utility gain, or certainty equivalent return, as the difference between
v̂j in Eq. (3.8) and v̂0 Eq. (3.6)

∆ = v̂j − v̂0. (3.9)

The utility gain that is expressed in average annualized percentage return, can be interpreted
as the portfolio management fee that an investor would be willing to pay to have access to the
additional information available in a predictive model relative to the information in the historical
term premia alone. We report results for risk aversion parameters γR = 3 and γR = 6; the results
are qualitatively similar for other reasonably values (ranging from 1 to 10).

3.4.3 In-Sample and Out-of-Sample Performance

In Table 5, we report the in-sample and out-of-sample performance of our excess return forecasts
and the utility gain ∆ for the 5-year bonds. The statistical and economic evaluations for the
in-sample group across maturities (2 to 10 years) are summarized in Figures 11 and 12, and
where the evaluations for the out-of-sample group are displayed in Figure 13 and 14.

In Table 5, we find that across all forecast horizons NS-DMA* produce higher out-of-sample
explanatory power and economic value than the other models. The R2

OS of NS-DMA* ranges
22Following Campbell and Thompson (2008), Rapach, Strauss and Zhou (2009) and Thornton and Valente

(2012), we constrain the portfolio weight on bonds to lie between -100% and 200% each month, so in Eq. (3.5)
w0,t = −1 (w0,t = 2) if w0,t < −1 (w0,t > 2).
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Table 5: Predictive Results of 5-Year Bond Excess Returns

h = 12 h = 9

R2
OS ∆ (γR = 3) ∆ (γR = 6) R2

OS ∆ (γR = 3) ∆ (γR = 6)

In NS-DMA* 31.49*** 0.75 0.83 29.23*** 0.54 0.56

Sample Wright 18.66*** 0.21 0.24 17.91*** 0.12 0.14

BRW 18.46*** 0.14 0.16 17.66*** 0.08 0.10

Out of NS-DMA 4.70*** 0.15 0.15 5.64*** 0.09 0.08

Sample DL -3.44 – – -1.64 – –

CP -28.35 – – -21.76 – –

h = 6 h = 3

R2
OS ∆ (γR = 3) ∆ (γR = 6) R2

OS ∆ (γR = 3) ∆ (γR = 6)

In NS-DMA* 25.24*** 0.31 0.30 17.46*** 0.20 0.21

Sample Wright 14.83*** 0.07 0.07 7.68*** 0.04 0.03

BRW 14.59*** 0.05 0.05 7.57*** 0.04 0.03

Out of NS-DMA 3.58** 0.03 0.02 0.95* 0.02 0.01

Sample DL -1.33 – – 0.39 – –

CP -10.81 – – -13.12 – –

Notes: 1. The table reports the out-of-sample R2 statistics (unit %) for log excess bond returns (holding 3, 6,
9 and 12 months) on the 5-year long-term Treasury bonds over the forecast evaluation period from 1983:12 to
2013:11. The forecasting horizons (holding periods) are h = 3, 6, 9, 12 months, respectively.
2. Utility gain (∆) is the portfolio management fee (in annualized percentage return) that an investor with
mean-variance preferences would be willing to pay to have access to the forecasting model. The utility gain is
computed at two risk aversion levels, i.e., γR = 3, 6. Higher utility gain is preferred.
3. Statistical significance for the R2 statistic is based on the p-value for the Clark and West (2007) out-of-sample
MSPE-adjusted statistic; the statistic corresponds to the test of the null hypothesis that the competing model has
equal expected square prediction error relative to the benchmark forecasting model (historical mean) against the
alternative hypothesis that the competing forecasting model has a lower expected square prediction error than
the benchmark forecasting model. *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively.
4. The in-sample group includes NS-DMA*, Wright and BRW, and the full-sample information is used to estimate
predictable elements in Eq. (E.9). The out-of-sample group includes NS-DMA, DL and CP, and the information
up to and including time t are used for estimation. CP factor is recursively constructed using one-year yield and
2- to 10-year forward rates.
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from 17% to 57% across four forecast horizons, and both the R2
OS and economic value increase

with forecast horizons. The economic value reaches 0.83% for the 5-year bond when γR = 6. In
general, the NS-DMA*, BRW and Wright have relatively higher predictive performance, which
makes sense as these three models are estimated with the whole sample; the information of
realized excess returns is included in their term premia estimates.23 In other words, the model-
implied term premia at time t estimated from these three models can potentially be distorted
by the realized information at time time t+1 and forward, so the estimates may not fully reflect
the current expectations of agents at each point in time.

Conversely, the NS-DMA does not have the distortions as it does not include any information
in the future. Surprisingly, the NS-DMA with information up to time t, also has significant
forecasting performance, and economic value quantitatively similar to, or even higher than,
BRW and Wright. When the NS-DMA is compared with the CP factor or DL, the advantage
is more distinct as the out-of-sample performance of the CP or DL is even worse than the EH
benchmark. The results distinguish the robustness of NS-DMA* and NS-DMA in revealing the
term structure dynamics. Moreover, the excess return forecasts of NS-DMA significantly (at
1 % for 9- and 12-month forecasting horizons) outperform the Expectation Hypothesis model,
the economic value remains positive for all forecast horizons. The statistical significance implies
that the Expectation Hypothesis does not hold, which has been well indicated in the previous
literature. Although the NS-DMA has both statistical power and economic value, the utility
gain from the out-of-sample predictability is not sufficiently large, especially for shorter forecast
horizons. The modest finding in economic value is consistent with Della Corte, Sarno and
Thornton (2008). For bond investors and practitioners, the EH still plays an important role
in out-of-sample forecasts of interest rate term structure, especially at short forecast horizons.
However, the EH cannot fully reflect the real-time expectations of agents when facing economic
uncertainty despite its conveniency. Although the NS-DMA may not provide large economic
gains for our constructed portfolio, it is useful in revealing the agents’ expectations in real time.

3.5 Model-Implied Term Premia

In this section we set out a visual comparison of our term premium estimates. We plot the
NS-DMA time-varying Risk Premia from 1985 for a medium-term bond (maturity 36 months)
and a long-term bond (maturity 120 months) in Figure 6.24 For comparison, we also plot
the model-implied term premia estimated from other approaches proposed by Kim and Wright
(2005), Wright (2011) and Bauer, Rudebusch and Wu (2014).25

As it is shown in Figure 6, the NS-DMA seems to have captured the level and volatility of
the Risk Premium. The estimates from NS-DMA have a consistent trend with the estimates
of Kim and Wright (2005), Wright (2011) and Bauer, Rudebusch and Wu (2014), especially
at the medium-term maturity, where the degree of term premia correlation between NS-DMA
and Kim and Wright (2005) is 0.55 and the correlation between NS-DMA and Wright (2011)
(or Bauer, Rudebusch and Wu (2014)) is more than 0.70. In general the term premia shows

23In fact, it is a ‘pseudo’ forecasting exercise to generate forecasts using these three models, as the full-sample
estimation of these models introduces an extra layer of forward-looking information. The reason we do this is
to provide benchmarks to evaluate the in-sample performance of the NS-DMA*, the out-of-sample performance
and the NS-DMA, and the economic significance of both models.

24The Risk Premia at other maturities show similar patterns because of their high correlations, but the results
are not displayed here for sake of brevity.

25The comparison between the NS-DMA term premia and recursively estimated term premia from dynamic
Nelson-Siegel is shown in Appendix F. The NS-DMA approach seems to be more robust than the constant-
parameter dynamic Nelson-Siegel model, as the dynamic Nelson-Siegel model proposed by Diebold and Li (2006)
tends to overestimate the future short rates and hence underestimate the term premia.
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countercyclical pattern, as they rise in and around US recessions, except the estimates of Kim
and Wright (2005). The difference between the estimates of Kim and Wright (2005) (KW)
and other models is due to the estimated expectation of future short rate. As indicated in
Christensen and Rudebusch (2012), there could be potential inaccuracy in the KW measure,
because their factor dynamics tend to display much less persistence than the true process.
According to the observations here, future short rates from KW would be expected to revert to
their mean too quickly, and estimated risk-neutral rates would be too stable, so the KW term
premia has a relatively lower variance and may display an acyclical pattern.

Among all measures considered, the NS-DMA term premia seems to be more sensitive to
changes in the economic environment, which can be seen more clearly from the lower panel in
Figure 6 of the long-term term premia. The reason is that expectations of the future short
rates and, hence, the term premia can change severely. Our empirical evidence shows that the
NS-DMA has good performance in forecasting the future short rates, by utilizing a time-varying
approach and appropriately including the information of macro-finance variables. For example,
the short rate was continuously decreasing from 1990 to 1993 so the expectation of future short
rates were also deceasing. Long rates were relatively stable in contrast, which leads to the
increasing Risk Premia that peaked in 1993.

Specifically, our measures seem to capture the ‘Greenspan’s Conundrum’ in 2005,26 as the
premia level fell substantially. The effects of three rounds of QE in recent years are also captured.
The top panel in Figure 6 shows that the QE significantly increases the premia level, as the
expected future short rates fall more sharply than the long rates. Between 2012 and early 2013,
recession risk existed due to a fear of the rise in future short rates, which is consistent with the
low level of premia; it explains why QE was launched in that period. Towards the end of 2013,
the term premia was positive, consistent with the Fed tapering QE. Note that the effects of QE
for the 3-year bond is more significant than the 10-year bond, because investors’ expectations of
short rates for the long run tend to be relatively stable and usually higher than 3%, according to
the Blue Chip Financial Forecast survey data.27 Accurately estimating term premia can provide
valuable information for facilitating a prudent monetary policy, and NS-DMA estimates of the
term premium are quite promising in serving this objective.

Lastly, we can observe that a divergence between the estimates of NS-DMA and other
estimates from Wright (2011) and Bauer, Rudebusch and Wu (2014), lies in the financial crisis
period. Christensen, Lopez and Rudebusch (2010) indicate that during the financial crisis,
financial markets encountered intense selling pressure because of fears of credit and liquidity
risks. The surge in risk aversion creates increased global demand for safe and highly liquid
assets, for example, the nominal U.S. Treasury securities. This ‘flight-to-quality’ could lead to a
sharp decline in their yields and therefore result in downward pressure on term premia. Bauer,
Rudebusch and Wu (2014) argue, meanwhile, that the procyclical flight-to-quality pressure
could not completely offset the usually countercyclical pattern of risk. Based on our estimates,
we believe the flight-to-quality demand is evident and can suppress the countercyclical pattern.
This makes a distinction between the financial crisis and the previous recessions, as global
marketa are more unified than ever before and hence capital flows to a safe heaven.28

26Federal Reserve Chairman Alan Greenspan observed that long-term yields had trended lower despite the
fact that the Federal Open Market Committee’s target for the federal funds rate had risen. A variety of possible
explanations were considered implausible and, hence, he called it a ‘conundrum’.

27We thank Jonathan Wright for pointing this out and sharing the survey data.
28The countercyclical patterns of term premia before recessions have been researched in previous literature,

such as Estrella and Mishkin (1998), Wright (2006), Kim (2009) and Wheelock and Wohar (2009), but the
behavior during recession of term premia is not thoroughly discussed. D’Agostino, Giannone and Surico (2006)
suggest that the term spread may become a weaker indicator of the real economy after the Great Moderation,
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Figure 6: Time-Varying Term Premia of 36-and 120-Month Bonds

Notes:
1. The top panel is the 36-month term premia and the bottom is the 120-month term premia. The EH
consistent 36- and 120-month and bond yields are estimated using Eq. (E.2); we then calculate the term premia
using Eq. (E.5).
2. In addition to NS-DMA, we use the whole sample to separately estimate two types of term premia employing
the methods proposed by Wright (2011) and Bauer, Rudebusch and Wu (2014). The Kim and Wright (2005)
term premia can be obtained from the Federal Reserve Board website.
3. Shaded areas are recession periods based on the NBER Recession Indicators. The unit is percentage.
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It is worth noting that the models of Wright (2011) and Bauer, Rudebusch and Wu (2014)
are estimated with the whole sample of data, so the estimates of current term premia implicitly
absorb the information from the future, which may be the potential reason for the divergence
between NS-DMA and the two models. Therefore, to evaluate the robustness of the ‘flight-to-
quality’ demand in financial crisis, we also use the full-sample estimates of the NS-DMA*.29

The smoothed estimates are plotted in Figure 7; the smoothed Term Premium estimates of
NS-DMA are less volatile and more consistent with the estimates of the other models, but the
’flight-to-quality’ demand is still obvious as shown in the top panel.

which potentially supports our conclusion that the ‘flight-to-quality’ demand can suppress the countercyclical
patterns of term premia.

29See Appendix A.3, the estimates of NS-DMA in Figure 6 reflect the expectations in real-time while the NS-
DMA* estimates from the Rauch-Tung-Striebel (RTS) smoother contain the information of realized expectations.
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Figure 7: Time-Varying Term Premia of 36-and 120-Month Bonds with Smoothed NS-DMA

Notes:
1. The top panel is the 36-month term premia and the bottom is the 120-month term premia. The EH
consistent 36- and 120-month and bond yields are estimated using Eq. (E.2); we then calculate the term premia
using Eq. (E.5).
2. We plot the NS-DMA term premia estimated from the RTS smoother conditional on the information of the
whole sample. In addition to the smoothed estimates, we use the whole sample to separately estimate two types
of term premia employing the methods proposed by Wright (2011) and Bauer, Rudebusch and Wu (2014). The
Kim and Wright (2005) term premia can be obtained from the Federal Reserve Board website.
3. Shaded areas are recession periods based on the NBER Recession Indicators. The unit is percentage.
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4 Conclusion
The Nelson-Siegel approach of yield curve modeling has been extended by Diebold and Li
(2006), Diebold, Rudebusch and Aruoba (2006) and Bianchi, Mumtaz and Surico (2009). We
further extend the literature using a Dynamic Model Averaging approach (NS-DMA), in order
to characterize the nonlinear dynamics of yield factors, as Duffee (2002) suggests nonlinearity
can potential improve yield forecasts. The framework we propose generalizes some frontier
econometric techniques, and is augmented with many (unspanned) macro-finance factors as in
Dewachter and Iania (2012). The NS-DMA method significantly improves the predictive accu-
racy and successfully identifies the dynamics of term premia, on grounds that it seems to have
appropriately incorporated the information in the macro-economy. We then explore the predic-
tive power of our term structure model regarding the future excess holding period returns. Our
approach allows for potential structural breaks and model uncertainty, and hence, our real-time
term premia forecasts are plausible and have both statistical power and economic value. We
specifically discuss some informative responses of bond yields to monetary policy implementa-
tions in different periods, such as the Great Moderation and the QE after the financial crisis.
Moreover, a distinct ’flight-to-quality’ demand in the financial crisis is revealed based on our
evidence.

To correctly specify the interactions between the yield factors and macro variables, realistic
specifications are introduced to enhance our model, such as the settings of unspanned macro
risks and time-varying parameters; but these assumptions cause econometric challenges in terms
of model tractability. The challenges are addressed here by bringing in an efficient estimation
technique. Our model is believed to be robust, as it is highly consistent with the theoretical
and empirical findings in the previous yield curve literature. Future research could employ a
one-step approach to provide forecasts with higher accuracy, in which case a trade-off should
be made between predictive accuracy and estimation efficiency. Discussing the real part of the
term structure is meaningful and desirable, but it is beyond the scope of this paper and will be
our further work.
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Data Appendix

Table 6: List of Yields and Macro-Finance Variables

Series ID Description

TB 3- and 6-month Treasury Bills (Secondary Market Rate) (NSA) [1]

ZCY Smoothed Zero-coupon Yield from Gürkaynak, Sack and Wright (2007) (NSA) [1]

IND Industrial Production Index [5]

CPI Consumer Price Index for All Urban Consumers: All Items Less Food & Energy [5]

FED Effective Federal Funds Rate, End of Month (NSA) [1]

SP S&P 500 Stock Price Index, End of Month (NSA) [5]

TCU Capacity Utilization: Total Industry [1]

M1 M1 Money Stock [5]

TCC Total Consumer Credit Owned and Securitized, Outstanding (End of Month) [5]

LL Loans and Leases in Bank Credit, All Commercial Banks [5]

DOE DOE Imported Crude Oil Refinery Acquisition Cost (NSA) [5]

MSP Median Sales Price for New Houses Sold in the United States (NSA) [5]

TWX Trade Weighted U.S. Dollar Index: Major Currencies (NSA) [1]

ED Eurodollar Spread: 3m Eurodollar Deposit Rate - 3m Treasury Bill Rate (NSA) [1]

WIL Wilshire 5000 Total Market Index (NSA) [5]

DYS Default Yield Spread: Moodys BAA-AAA (NSA) [1]

NFCI National Financial Conditions Index (NSA) [1]

Notes:
1. In square brackets [·] we have a code for data transformations used in this data set: [1] means original series is used; [5] means log
first-order difference is used to detrend and ensure stationarity. The series are seasonally adjusted except the ones with NSA.
2. Data are obtained from St. Louis Federal Reserve Economic Data [http://research.stlouisfed.org/], spanning from
Nov. 1971 to Nov. 2013. The smoothed zero-coupon yield is available on the Federal Reserve Board website
[http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html/].
3. National Financial Conditions Index, provided by the Chicago Fed, is available on the website
[http://www.chicagofed.org/webpages/publications/nfci/].
4. The small-size VAR model includes no macro variables. The medium-size VAR model includes only three macro variables: IND,
CPI and FED. The large-size VAR model uses all the macro and financial variables in this data list.
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Appendix A Econometric Methods

A.1 Bayesian Kalman Filter with Forgetting Factor

We conduct the Kalman filter estimation for the state space model with Eq. (2.3) and Eq.
(2.4):

zt = Xtβt + vt,

βt+1 = βt + µt,

where zt is a n × 1 vector of variables, Xt = In ⊗
[
z′t−1, ..., z

′
t−p

]′
, βt are VAR coefficients,

vt ∼ N (0,Σt) with Σt an n× n covariance matrix, and µt ∼ N (0, Qt).
Given data at time t denoted as Dt = (zt, Xt) and all the data from time 1 to t denoted as

D1:t, the Bayesian solution to updating about the coefficients βt takes the form

p (βt|Dt) ∝ L (zt;βt, Xt, D1:t−1) p (βt|Dt−1) ,

p (βt|Dt−1) =
∫
℘
p (βt|D1:t−1, βt−1) p (βt−1|Dt−1) dβt,

where ℘ is the support of βt. The solution to this problem can be defined using a Bayesian
generalization of the typical Kalman filter recursions. Given an initial condition β0 ∼ N (m0,Φ0)
we can define (cf. West and Harrison (1997))30:

1. Posterior at time t− 1

βt−1|Dt−1 ∼ N (mt−1,Φt−1) ,

2. Prior at time t

βt|Dt−1 ∼ N
(
mt|t−1,Φt|t−1

)
,

where mt|t−1 = mt−1 and Φt|t−1 = Φt−1 +Qt.

3. Posterior at time t

βt|Dt ∼ N (mt,Φt) , (A.1)

where mt = mt|t−1+ Φt|t−1X
′
t(V −1

t )′ṽt and Φt = Φt|t−1 − Φt|t−1X
′
t(V −1

t )′XtΦ′t|t−1, with
ṽt = zt −Xtmt|t−1 the prediction error and Vt = XtΦt|t−1X

′
t + Σt its covariance matrix.

Following the discussion above, we need to find estimates for Σt and Qt in the formulas
above. We define the time t prior for Σt to be

Σt|Dt−1 ∼ iW (St−1, δnt−1) , (A.2)

while the posterior takes the form

Σt|Dt ∼ iW (St, nt) ,
30For a parameter θ we use the notation θt|s to denote the value of parameter θt given data up to time s (i.e.

D1:s) for s > t or s < t. For the special case where s = t, I use the notation θt|t = θt
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where nt = δnt−1 + 1 and St = (1− at)St−1 + at
(
S0.5
t−1Σ−0.5

t−1 vtv
′
tΣ−0.5

t−1 S
0.5
t−1

)
, with at = n−1

t . In
this formulation, vt is replaced with the one-step ahead prediction error ṽt|t−1 = zt −mt|t−1Xt.
The estimate for St is approximately equivalent numerically to the Exponentially Weighted
Moving Average (EWMA) filter St = δSt−1 + (1− δ) vtv′t. The parameter δ is the decay factor,
where for 0 < δ < 1. In fact, Koop and Korobilis (2013) apply such a scheme directly to
the covariance matrix Σt, which results in a point estimate. In this case by applying variance
discounting methods to the scale matrix St, we are able to approximate the full posterior
distribution of Σt.

Regarding Qt, we use the forgetting factor approach in Koop and Korobilis (2013); see also
West and Harrison (1997) for a similar discounting approach. In this case Qt is set to be
proportionate to the filtered covariance Φt−1 = cov (βt−1|Dt−1) and takes the following form

Qt =
(
Λ−1 − 1

)
Φt−1, (A.3)

for a given forgetting factor Λ.
The brief interpretation of forgetting factors is that they control how much ‘recent past’

information will be used. With the exponential decay for the forgetting factors, if it takes a
value of 0.99, the information 24 periods ago (two years for monthly data) receives around 80%
as much weight as the information of last period. If forgetting factor takes 0.95, then forecast
performance 24 periods ago receives only about 30% as much weight. The similar implication
holds for the decay factor.
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A.2 Probabilities for Dynamic Selection and Averaging

To obtain the desire probabilities for dynamic selection or averaging, we need updating at each
point in time. In papers such as Raftery, Kárnỳ and Ettler (2010) or Koop and Korobilis (2012)
the models are TVP regressions with different sets of explanatory variables. The analogous
result of the model prediction equation, when doing DMA or DPS, is

p(βt−1|zt−1) =
K∑
k=1

p(β(k)
t−1|Lt−1 = k, zt−1)Pr(Lt−1 = k|zt−1), (A.4)

where Lt−1 = k means the kth model31 is selected and p(β(k)
t−1|Lt−1 = k, zt−1) is given by the

Kalman filter (Eq. A.1). To simplify notation, let π(l)
t|s = Pr(Lt = l|zs).

Raftery, Kárnỳ and Ettler (2010) used an empirically sensible simplification that

π
(i)
t|t−1 =

(
π

(i)
t−1|t−1

)α
∑K
l=1

(
π

(l)
t|t

)α , (A.5)

where 0 < α ≤ 1. A forgetting factor is also employed here, of which the meaning is discussed in
the last section. The huge advantage of using the forgetting factor α is that it does not require
an MCMC algorithm to draw transitions between models or a simulation algorithm over model
space.

The model updating equation is

π
(i)
t|t =

π
(i)
t|t−1p

(i)(zt|zt−1)∑K
l=1 π

(l)
t|t−1p

(l)(zt|zt−1)
, (A.6)

where p(i)(zt|zt−1) is the predictive likelihood. When proceeding with Dynamic Model Se-
lection, the model with the highest probability is the best model we would like to select. Alter-
natively, we can conduct Dynamic Model Averaging, which average the predictions of all models
with respective probabilities.

A.3 A Backward Smoother for the TVP-VAR

In Appendix A.1, the algorithm for estimating the VAR with time-varying parameters uses only
forward recursions, i.e. parameters at time t are updated as new data become available. Such
algorithm is very convenient when using the VAR for forecasting or real-time monetary policy
analysis. One can obtain more accurate estimates of βt by complementing the Kalman filter
with a smoothing algorithm. Smoothing algorithms are based on backward recursions where
information at time t+ 1 or forward is used to update coefficients at time t. It becomes obvious
that such algorithms are not suitable for monetary policy in real-time, however they can be
used for ex-post analysis of monetary phenomena.

Here we can use a fixed-interval smoother, such as the RTS (Rauch-Tung-Striebel) smoother
developed by Rauch, Striebel and Tung (1965), which does not depend on the decay factors Λ
and δ thus providing a mimimum mean square estimator of βt without the need to optimize
with respect to the decay factors:

βt|T = E (βt|D1:T ) .
31For example, the kth model in Dynamic Model Selection/Averaging, or the kth candidate γ value in Dynamic

Prier Selection.
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The solution to this optimization problem takes the following form (conditional on the infor-
mation at time T )

mt|T = mt|t +At
(
mt+1|T −mt+1|t

)
,

Φt|T = Φt|t +At
(
Φt+1|T − Φt+1|t

)
A′t,

where At = Φt|tΦ−1
t+1|t, and for t ‘running backwards’ from T − 1 to 1.

As well as smoothing the large parameter vector βt, one can obtain smoothed estimates
of the covariance matrix Σt. West and Harrison (1997) provide such a backward (smoothing)
algorithm. By iterating t from T − 1 to 1, we can estimate

S−1
t|T = (1− δ)S−1

t + δS−1
t+1|T ,

nt|T = (1− δ)nt + δnt+1|T ,

in which case we can obtain Σt|T using

Σt|D1:T ∼ iW
(
St|T , nt|T

)
.
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Appendix B Interpretation of Factor Dynamics
We illustrate the factor dynamics in this section and try to shed light on the economic im-
plications of the latent factors. The extracted NS factors are shown in Figure 8. The Level
factor has a downward trend since the early 1980s. The Level factor also has greater persis-
tence compared with the other more volatile factors. The downward trend in the Level factor
is consistent with the descriptive statistics in Table 1 and the results of Koopman, Mallee and
Van der Wel (2010). The latter suggest a strong link between the Level factor and (expected)
inflation, as they share high persistence. Evans and Marshall (2007) also indicate that there
is a link between the level of yields and inflation with structural VAR evidence. In particular,
the Level factor fall significantly after the financial crisis, which may indicate that the market
had low inflation expectations. The Level factor rises in 2013, potentially associated with rising
inflation and the impact of the Fed’s Quantitative Easing (QE) pattern.

Figure 8: Nelson-Siegel Factor Dynamics

Notes: The graph shows the Nelson-Siegel Level, Slope and Curvature factors, which are drawn from Eq. (2.1).
The shaded areas are recession periods according to the NBER Recession Indicators.

The Slope factor tends to fall sharply within recession periods, as indicated in Figure 8 by
the shaded areas. Therefore, this factor could be closely related to real activity. The Slope
factor is often considered as a proxy for the term spread, see Diebold, Rudebusch and Aruoba
(2006). It can also be considered as a proxy for the stance of monetary policy, as the short end
is influenced by policy rates.32

32Recent research relates the Slope of term structure to news shocks on total factor productivity and asset-class
risk, see Kurmann and Otrok (2013) and Bansal, Connolly and Stivers (2014).
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Lastly, the Curvature factor is harder to interpret and Diebold and Rudebusch (2013) in-
dicate that this factor is less important than the other factors. On one hand, Litterman,
Scheinkman and Weiss (1991) link the Curvature factor to the volatility of the level factor, via
the argument of yield curve convexity, which can also be seen in Neftci (2004).33 On the other
hand, medium rates can be linked to expect short rates in the future, and therefore should
be linked to current and expected future policies, which may potentially contain useful macro
information missing in the first two factors.

33Generally, higher convexity means higher price-volatility or risk, and vice versa.
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Appendix C Dynamic Prior Selection

Figure 9: DPS results

Notes: The above three graphs are the prior selection results given α = 0.99. The blue, green and red lines (i.e. the lines in the left,
middle and right) are the selections for the small, medium and large VAR models, respectively. The y-axis shows the candidate prior
values [10−10, 10−6, 0.001, 0.005, 0.01, 0.05, 0.1], and the x-axis indicates the time horizon from 1975.

Notes: The above three graphs are the prior selection results given α = 0.98.

Notes: The above three graphs are the prior selection results given α = 0.97.

Notes: The above three graphs are the prior selection results given α = 0.96.
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Appendix D Additional Forecasting Results

Figure 10: DMA Forecasts of Yields

Notes: These are 3 months ahead forecasts (95% error band) for yields against realized values with maturities 6, 36, 60 and 120
months, from early 1975 to late 2013. The forecasts are two-step forecasting using NS-DMA, which can be summarized by Eq. (2.1),
(2.3) and (2.4).
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Table 7: One-Month Ahead Relative MSFE of Term Structure Models

MA NS-DMA DMS TVP TVP-M DL DL-R10 DL-M DL-SW

3 0.706† 0.781 0.747 0.710 0.848 1.085 0.885 1.417

6 0.818† 0.927 0.894 0.908 1.068 1.313 1.130 1.668

12 0.971† 1.031 0.983 1.011 0.930 0.897 0.979 1.547

24 1.000† 1.075 1.044 1.060 1.064 1.105 1.103 1.461

36 0.977† 1.039 1.032 1.026 1.123 1.223 1.144 1.237

48 0.965† 1.008 1.016 1.002 1.130 1.266 1.143 1.099

60 0.965† 0.996 1.011 0.997 1.116 1.273 1.129 1.051

72 0.971† 0.998 1.015 1.006 1.096 1.259 1.114 1.055

84 0.982† 1.008 1.026 1.024 1.074 1.226 1.098 1.090

96 0.996† 1.023 1.040 1.046 1.052 1.173 1.083 1.139

108 1.009† 1.038 1.055 1.068 1.031 1.108 1.068 1.183

120 1.020† 1.050 1.065 1.084 1.015 1.043 1.053 1.214

Mean 0.964† 1.009 1.008 1.010 1.053 1.162 1.083 1.237

Notes: 1. This table shows 1-month ahead forecasts of bond yields with maturities ranging from 3 months to 120 months. The
predictive duration is from 1983:10 to 2013:11.
2. We report the ratio of each models Mean Squared Forecast Errors (MSFE) relative to Random Walk MSFE, and the preferred
values are in bold. The dagger (†) indicates, in terms of the sum of predictive log-likelihood, the model has the preferred value among
all models at certain maturities (or in total), see Geweke and Amisano (2010) for details.
3. In this table, we use following abbreviations. MA: Maturity (Months); MSFE: Mean Squared Forecasting Error; Mean: Averaged
MSFE across all sample maturities. In our proposed Nelson-Siegel (NS) framework, DMA (Dynamic Model Averaging) averages
all the models with probabilities in each step, while DMS (Dynamic Model Selection) chooses the best model with the highest
probability at any point in time. TVP: a time-varying parameter model without macro information; TVP-M: a time-varying
parameter model with three macro variables: fund rate, inflation and industrial production, similar to Bianchi Mumtaz and Surico
(2009) but estimated with a fast algorithm without the need of MCMC; DL: Diebold and Li (2006) model, i.e. constant coefficient
Vector Autoregressive model with recursive (expanding) estimations; DL-R10: Diebold and Li (2006) estimates based 10-year rolling
windows; DL-M: factor dynamics in Diebold and Li (2006) are augmented with three macro variables: fund rate, inflation and
industrial production, using recursive estimations; DL-SW: factor dynamics in Diebold and Li (2006) are augmented with with
three principal components (see Stock and Watson (2002)) of our macro/finance data, using recursive estimations; RW: Random Walk.
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Appendix E Economic Evaluation Related

E.1 Expectation Hypothesis and Term Premium

Within our empirical framework we shall set out the formal modeling of the term premia, which
has been used to explain the failure of the Expectations Hypothesis and provides important
information for the conduct of monetary policy, see Gürkaynak and Wright (2012).34

Based on the weak form of the Expectation Hypothesis, the long-term yield is average of
expected future short term rates yt(τ)EH plus a constant Risk Premium, constantEH :

yt(τ) = yt(τ)EH + constantEH , (E.1)

where the Expectations Hypothesis (EH) consistent bond yield yt(τ)EH is given by:35

yt(τ)EH = 1
τ

τ−1∑
i=0

Etyt+i(1), (E.2)

where yt(τ) is the yield at time t for a bond of τ -period maturity. That is to say, the EH
consistent long yield is equal to the average of expected short yields Etyt+i(1).

The Expectation Hypothesis is closely related to the concept of excess holding period return.
First, we define the holding period return as the return on buying an τ -year zero coupon bond
at time t and then selling it, as an (τ −m)-year zero coupon bond, at time t+m. This holding
period return is given by:

HPRt+m(τ,m) = 1
m

[pt+m(τ −m)− pt(τ)] (E.3)

where pt(τ) is the log price of τ -year zero coupon bond at time t and pt+m(τ −m) is the log
price of (τ −m)-year zero coupon bond at time t + m. The difference between holding period
return and the m-year continuously compounded short yield is the excess holding period return:

EXRt+m(τ,m) = HPRt+m(τ,m)− yt(m). (E.4)

If the weak form of the Expectation Hypothesis holds, then with some simple algebra, we can
prove that the expected excess holding period returns are the constant Risk Premia. In other
words, we should not be able to predict the excess returns in the future. However, Cochrane and
Piazzesi (2009) construct a test by regressing the excess bond returns on the forward rates, and
show that the forward rates have significant predictive power. The Expectation Hypothesis is
therefore rejected, implying that the term premium should be time-varying.36 The time-varying
term premium is therefore,

TPt(τ) = yt(τ)− yt(τ)EH . (E.5)
34A simple approach to modeling the term structure is the Expectations Hypothesis (EH) that expected future

short rates explain long rates. Campbell and Shiller (1991) indicates the empirical evidence fails to justify the
strong form of Expectations Hypothesis and the idea that long-term interest rate are simply determined by
the average of current and future expected short-term rates. However, EH could be resuscitated in weak form
allowing for a constant Term Premia, consistent with an upward sloping yield curve. But risk, and hence the
Term Premia, is unlikely to be constant while underlying variables are changing.

35The expectation here is under the physical measure. Our model can potentially be made arbitrage free, but
this is beyond the scope of this paper. For further discussion see Joslin, Priebsch and Singleton (2014)

36Similar evidence can be found in Duffee (2002), Cochrane and Piazzesi (2005), Sarno, Thornton and Valente
(2007), Tang and Xia (2007) and Gürkaynak and Wright (2012).
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Alternatively, we can rewrite Eq. (E.5) by relating the term premium to the excess holding
period return:

TPt(τ) = 1
τ
Et
( τ−2∑
i=0

EXRt+1+i(τ, 1)
)
. (E.6)

By the linearity of expectation, we can write the 1-period ahead expected excess holding
period return as

Et
(
EXRt+1(τ, 1)

)
= −(τ − 1)Et TPt+1(τ − 1) + τ TPt(τ). (E.7)

Therefore, under the weak form of the Expectation Hypothesis, the expected excess holding
period return is a constant as we mentioned:

Et
(
EXREHt+1(τ, 1)

)
= constantEH . (E.8)

In contrast, if the term premia is time-varying, then the predictability of excess holding period
return stems from an element xpt that is orthognal to the EH term premia constantEH ,

Et
(
EXRt+1(τ, 1)

)
= constantEH + xpt . (E.9)

If we have a model that can generate time-varying term premia, then it is straightforward to
obtain xpt . We can simply use the results from Eq. (E.7) and subtract the expected excess
holding period returns from the mean. In the next section we use our estimates of the term
premia to model excess returns in the bond market.

E.2 Additional Results

To further elaborate on the results in our economic evaluation, Figures 11 and 12 provide a
general summary for the excess return forecasts of the in-sample group, across 9 bond maturities
(from 2 to 10 years). The NS-DMA* consistently outperforms the Wright and BRW models
across maturities and forecast horizons, both statistically and economically. The results suggest
more robust full-sample estimates of the term premia using the NS-DMA* model.
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Figure 11: Statistical Evaluation

Notes: These are the out-of-sample R2 statistics for bonds at maturities from 2 to 10 years. The predictive
duration is from 1983:10 to 2013:11. From top left clockwise we have forecast horizons/holding periods 3, 6, 9
and 12 months. The models present here are NS-DMA*, Wright and BRW. The statistics are consistently the
highest for the NS-DMA*.
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Figure 12: Economic Evaluation

Notes: These are the utility gain statistics ∆ (unit %) at risk averse level γR = 6. The investors can choose one
long-term bond as the risky asset from 9 maturities (2 to 10 years). The predictive duration is from 1983:10 to
2013:11. From top left clockwise we have forecast horizons/holding periods 3, 6, 9 and 12 months. The models
present here are NS-DMA*, Wright and BRW. The NS-DMA typically has the highest ∆.

Figure 13 and 14 summarize the statistical analysis and economic evaluation for the excess
return forecasts of the out-of-sample group, across 9 bond maturities (from 2 to 10 years).37 In
seems the recursively constructed CP factor has no predictability gains against the EH bench-
mark. The NS-DMA has significantly positive out-of-sample R2, especially for longer holding
periods. The utility gain from the NS-DMA is not very significant when compared to the
full-sample estimates from NS-DMA*, because the realization of agents’ expectations may be
contaminated by the market disturbances. Although the NS-DMA may not provide large eco-
nomic gains for our constructed portfolio, it is useful in revealing the agents’ expectations in real
time. The NS-DMA is more reliable than the unrealistic EH or other full-sample estimates, as
full-sample estimation unavoidably includes the information of realized expectations. In partic-
ular, NS-DMA allows for parameter and model uncertainty and hence is robust to learning and
structural breaks, see Piazzesi and Schneider (2007) and Gürkaynak and Wright (2012). There-
fore, our adaptive term structure model can provide plausible estimates in reflecting changes in

37Interestingly, there is a clear term structure of economic gains shown in Figure 14.
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investors’ conditional expectations concerning the future path of monetary policy as well as the
risk compensation the investors require.

Figure 13: Statistical Evaluation

Notes: 1. This figure shows the out-of-sample R2 statistics for bonds at maturities from 2 to 10 years. The
three models present here are NS-DMA, DL and CP.
2. The predictive duration is from 1983:10 to 2013:11. From top left clockwise we have forecast
horizons/holding periods 3, 6, 9 and 12 months.
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Figure 14: Economic Evaluation

Notes: 1. This figure shows the utility gain statistics ∆ (unit %) of the NS-DMA at risk averse level γR = 6.
The investors can choose one long-term bond as the risky asset from 9 maturities (2 to 10 years). The economic
value of the CP or DL is not calculated due to insignificant or negative out-of-sample R2.
2. The predictive duration is from 1983:10 to 2013:11. We have forecast horizons/holding periods 3, 6, 9 and 12
months.
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Appendix F Term Premia of Diebold-Li and NS-DMA

Figure 15: Time-Varying Term Premia of 36-and 120-Month Bonds

Notes:
1. The top panel is the 36-month term premia and the bottom is the 120-month term premia. The EH consistent 36- and 120-month
and bond yields are estimated using Eq. (E.2); we then calculate the term premia using Eq. (E.5).
2. In addition to NS-DMA, we plot the recursively estimated term premia employing the methods proposed by Diebold and Li (2006).
3. Shaded areas are recession periods based on the NBER Recession Indicators. The unit is percentage.
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