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Abstract

In a bilateral oligopoly, with large traders, represented as atoms,
and small traders, represented by an atomless part, when is there a
non-empty intersection between the sets of Walras and Cournot-Nash
allocations? Using a two commodity version of the Shapley window
model, we show that a necessary and sufficient condition for a Cournot-
Nash allocation to be a Walras allocation is that all atoms demand a
null amount of one of the two commodities. We provide two exam-
ples which show that this characterization holds non-vacuously. When
our condition fails to hold, we also confirm, through some examples,
the result obtained by Okuno, Postlewaite, and Roberts (1980): small
traders always have a negligible influence on prices, while the large
traders keep their strategic power even when their behavior turns out to
be Walrasian in the cooperative framework considered by Gabszewicz
and Mertens (1971) and Shitovitz (1973).
Journal of Economic Literature Classification Numbers: C71, C72,
D51.

1 Introduction

In his celebrated paper, Aumann (1964) proved that, in exchange economies
with a continuum of traders, the core coincides with the set of Walras al-
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locations. Some years later, Gabszewicz and Mertens (1971) and Shitovitz
(1973) introduced the notion of a mixed exchange economy, i.e., an exchange
economy with large traders, represented as atoms, and small traders, rep-
resented by an atomless part, in order to analyze oligopoly in a general
equilibrium framework. Gabszewicz and Mertens (1971) showed that, if
atoms are not “too” big, the core still coincides with the set of Walras allo-
cations whereas Shitovitz (1973), in his Theorem B, proved that this result
also holds if the atoms are of the same type, i.e., have the same endowments
and preferences.

Okuno, Postlewaite, and Roberts (1980) considered the result obtained
by Shitovitz (1973) so counterintuitive to call into question the use of the
core as the solution concept to study oligopoly in general equilibrium.1 This
lead them to replace the core with the Cournot-Nash equilibrium of a model
of simultaneous, noncooperative exchange between large traders and small
traders as the appropriate solution for the analysis of oligopoly in general
equilibrium. The model of noncooperative exchange they used belongs to a
line of research initiated by Lloyd S. Shapley and Martin Shubik (see Giraud
(2003) for a survey of this literature). In particular, they considered a mixed
exchange economy with two commodities which are both held by all traders.
Moreover, they assumed that no trader is allowed to be both buyer and seller
of any commodity. In this framework, they showed that, if there are two
atoms of the same type who demand, at a Cournot-Nash equilibrium, a pos-
itive amount of the two commodities, then the corresponding Cournot-Nash
allocation is not a Walras allocation. Therefore, under the assumptions of
Shitovitz’s Theorem B, demanding a non-null amount of the two commodi-
ties by all the atoms is a sufficient condition for a Cournot-Nash allocation
not to be a Walras allocation. This proposition allowed Okuno et al. (1980)
to conclude that the noncooperative model they considered is a useful one
to study oligopoly in a general equilibrium framework as the small traders
always have a negligible influence on prices, while the large traders keep
their strategic power even when their behavior turns out to be Walrasian in
the cooperative framework considered by Shitovitz (1973).

In this paper, we raise the question whether, in mixed exchange economies,
an equivalence, or at least a nonempty intersection, between the sets of Wal-
ras and Cournot-Nash allocations may hold. In order to further simplify
our analysis, we consider the model of bilateral oligopoly introduced by

1Okuno et al. (1980) did not quote the result obtained by Gabszewicz and Mertens
(1973). Nevertheless, their argument also holds, mutatis mutandis, for this result.
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Gabszewicz and Michel (1997) and further analyzed by Bloch and Ghosal
(1997), Bloch and Ferrer (2001), Dickson and Hartley (2008), Amir and
Bloch (2009), among others. By using this model, we still remain in a two-
commodity setting but we assume that each trader holds only one of the two
commodities whose aggregate amount is strictly positive in the economy. In
particular, we shall use a bilateral oligopoly version of the Shapley window
model.2 This model was first proposed informally by Lloyd S. Shapley and
further analyzed, in the case of finite economies, by Sahi and Yao (1989),
in economies with an atomless continuum of traders, by Codognato and
Ghosal (2000), and, in mixed exchange economies, by Busetto, Codognato,
and Ghosal (2011). In particular, Codognato and Ghosal (2000) proved that
the sets of Walras and Cournot-Nash allocations coincide in economies with
an atomless continuum of traders, thereby providing a noncooperative ver-
sion of Aumann’s theorem. Here, we first show, through some examples, that
this threefold equivalence may not hold, in the bilateral oligopoly configura-
tion, even under the assumptions made by Gabszewicz and Mertens (1971)
and Shitovitz (1973), thereby confirming the result obtained by Okuno et
al. (1980). We then answer our main question by proving a theorem which
states that demanding a null amount of one of the two commodities by
all the atoms is a necessary and sufficient condition for a Cournot-Nash
allocation to be a Walras allocation. This result does not depend on as-
sumptions on the atoms’ size, as in Gabszewicz and Mertens (1971), or on
their types, as in Shitovitz (1973), but only on their demand behavior at a
Cournot-Nash equilibrium. We also provide two examples which show that
this characterization theorem is non-vacuous.

The paper is organized as follows. In Section 2, we introduce the math-
ematical model. In Section 3, we state the main equivalence theorems. In
Section 4, we provide some examples and we state and prove our main the-
orem. In Section 5, we draw some conclusions from our analysis.

2 The mathematical model

We consider a pure exchange economy with large traders, represented as
atoms, and small traders, represented by an atomless part. The space of
traders is denoted by the measure space (T, T , µ), where T is the set of

2This two-commodity version of the Shapley window model differs from an analogous
version of the models à la Shapley and Shubik for the rule of price formation even if, in
the two types of models, the traders’ final hondings are the same.
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traders, T is the σ-algebra of all µ-measurable subsets of T , and µ is a real
valued, non-negative, countably additive measure defined on T . We assume
that (T, T , µ) is finite, i.e., µ(T ) < ∞. This implies that the measure
space (T, T , µ) contains at most countably many atoms. Let T0 denote the
atomless part of T . A null set of traders is a set of measure 0. Null sets of
traders are systematically ignored throughout the paper. Thus, a statement
asserted for “each” trader in a certain set is to be understood to hold for
all such traders except possibly for a null set of traders. A coalition is a
nonnull element of T . The word “integrable” is to be understood in the
sense of Lebesgue.

In the exchange economy, there are 2 different commodities. A com-
modity bundle is a point in R2

+. An assignment (of commodity bundles
to traders) is an integrable function x: T → R2

+. There is a fixed initial
assignment w, satisfying the following assumption.

Assumption 1. There is a coalition S such that w1(t) > 0, w2(t) = 0, for
each t ∈ S, and w1(t) = 0, w2(t) > 0, for each t ∈ Sc.

An allocation is an assignment x for which
∫
T x(t) dµ =

∫
T w(t) dµ.

The preferences of each trader t ∈ T are described by a utility function
ut : R

2
+ → R, satisfying the following assumptions.

Assumption 2. ut : R
2
+ → R is continuous, strongly monotone, and quasi-

concave, for each t ∈ T .

Let B(R2
+) denote the Borel σ-algebra of R2

+. Moreover, let T ⊗B
denote the σ-algebra generated by the sets E × F such that E ∈ T and
F ∈ B.
Assumption 3. u : T × R2

+ → R, given by u(t, x) = ut(x), for each t ∈ T
and for each x ∈ R2

+, is T
⊗B-measurable.

An allocation y dominates an allocation x via a coalition S if ut(y(t)) ≥
ut(x(t)), for each t ∈ S, ut(y(t)) > ut(x(t)), for a nonnull subset of traders
t in S, and

∫
S y(t) dµ =

∫
S w(t) dµ. The core is the set of all allocations

which are not dominated via any coalition.
A price vector is a nonnull vector p ∈ R2

+. A Walras equilibrium is
a pair (p∗,x∗), consisting of a price vector p∗ and an allocation x∗, such
that p∗x∗(t) = p∗w(t) and ut(x

∗(t)) ≥ ut(y), for all y ∈ {x ∈ R2
+ : p∗x =

p∗w(t)}, for each t ∈ T . A Walras allocation is an allocation x∗ for which
there exists a price vector p∗ such that the pair (p∗,x∗) is a Walras equilib-
rium.
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We introduce now the strategic market game considering the two-com-
modity version of the reformulation of the Shapley window model proposed
by Busetto et al. (2011). A strategy correspondence is a correspondence
B : T → P(R4

+) such that, for each t ∈ T , B(t) = {b ∈ R4
+ :

∑2
j=1 bij ≤

wi(t), i = 1, 2}, where bij represents the amount of commodity i that trader
t offers in exchange for commodity j. A strategy selection is an integrable
function b : T → R4, such that, for each t ∈ T , b(t) ∈ B(t). Given a
strategy selection b, we define the aggregate matrix B = (

∫
T bij(t) dµ).

Moreover, we denote by b \ b(t) a strategy selection obtained by replacing
b(t) in b with b ∈ B(t). With a slight abuse of notation, b \ b(t) will also
represent the value of the strategy selection b \ b(t) at t.

Then, we introduce two further definitions (see Sahi and Yao (1989)).

Definition 1. A nonnegative square matrix A is said to be irreducible if, for

every pair (i, j), with i 6= j, there is a positive integer k such that a
(k)
ij > 0,

where a
(k)
ij denotes the ij-th entry of the k-th power Ak of A.

Definition 2. Given a strategy selection b, a price vector p is said to be
market clearing if

p ∈ R2
++,

2∑

i=1

pib̄ij = pj(

2∑

i=1

b̄ji), j = 1, 2. (1)

By Lemma 1 in Sahi and Yao (1989), there is a unique, up to a scalar
multiple, price vector p satisfying (1) if and only if B̄ is irreducible. Then,
we denote by p(b) a function which associates with each strategy selection
b the unique, up to a scalar multiple, price vector p satisfying (1), if B̄ is
irreducible, and is equal to 0, otherwise.

Given a strategy selection b and a price vector p, consider the assignment
determined as follows:

xj(t,b(t), p) = wj(t)−
2∑

i=1

bji(t) +
2∑

i=1

bij(t)
pi

pj
, if p ∈ R2

++,

xj(t,b(t), p) = wj(t), otherwise,

j = 1, 2, for each t ∈ T .
Given a strategy selection b and the function p(b), the traders’ final

holdings are determined according with this rule and consequently expressed
by the assignment

x(t) = x(t,b(t), p(b)),
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for each t ∈ T .3 It is straightforward to show that this assignment is an
allocation.

We are now able to define a notion of Cournot-Nash equilibrium for this
reformulation of the Shapley window model (see Codognato and Ghosal
(2000) and Busetto et al. (2011)).

Definition 3. A strategy selection b̂ such that ¯̂B is irreducible is a Cournot-
Nash equilibrium if

ut(x(t, b̂(t), p(b̂))) ≥ ut(x(t, b̂ \ b(t), p(b̂ \ b(t)))),

for each b ∈ B(t) and for each t ∈ T .4

A Cournot-Nash allocation is an allocation x̂ such that x̂(t) = x(t, b̂(t), p(b̂)),
for each t ∈ T , where b̂ is a Cournot-Nash equilibrium.

3 The equivalence theorems

The following theorem reminds us that, when the space of traders is atom-
less, the core and the sets of Walras and Cournot-Nash allocations are all
equivalent.

Theorem 1. Under Assumptions 1, 2, and 3, if T = T0, then the core
coincides with the set of Walras and Cournot-Nash allocations.

Proof. The equivalence between the core and the set of Walras allocations
was proved by Aumann (1964) in his Main Theorem whereas the equivalence
between the sets of Walras and Cournot-Nash allocations was proved by
Codognato and Ghosal (2000) in their Theorem 2.

Gabszewicz and Mertens (1971) and Shitovitz (1973) showed that an
equivalence between the core and the set of Walras allocations may hold
even when the space of traders contains atoms. In order to state their two
main theorems, we need to introduce some further notation and definitions.
Two traders τ, ρ ∈ T are said to be of the same type if w(τ) = w(ρ) and
uτ (·) = uρ(·). Let A = {A1, A2, . . . , Ak, . . .} be a partition of the set of atoms
T \T0 such that Ak contains all the atoms which are of the same type as an

3In order to save in notation, with some abuse, we denote by x both the function x(t)
and the function x(t,b(t), p(b)).

4Let us notice that, as this definition of a Cournot-Nash equilibrium explicitly refers
to irreducible matrices, it applies only to active Cournot-Nash equilibria (on this point,
see Sahi and Yao (1989)).
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atom τk ∈ Ak, for each k = 1, . . . , |A|, where |A| denotes the cardinality of
the partition A. Moreover, let Tk be the set of the traders t ∈ T which are
of the same type as the atoms in Ak, for each k = 1, . . . , |A|. Given a set Tk,
denote by τhk the h-th atom belonging to the set Tk, for each h = 1, . . . , |Ak|,
where |Ak| denotes the cardinality of the set Ak. We can now state the two
theorems.

Theorem 2. Under Assumptions 1, 2, and 3, if, either |A| = 1 and∑|A1|
h=1

µ(τh1)
µ(T1)

< 1, or, |A| > 1 and
∑|A|

k=1

∑|Ak|
h=1

µ(τhk)
µ(Tk)

≤ 1, then the core
coincides with the set of Walras allocations.

Proof. See the proof of the theorem in Gabszewicz and Mertens (1971).

Theorem 3. Under Assumptions 1, 2, and 3, if |A| = 1 and |A1| ≥ 2, then
the core coincides with the set of Walras allocations.

Proof. See the proof of Theorem B in Shitovitz (1973).

Okuno et al. (1980) already showed that the equivalence stated by The-
orem 3 (Shitovitz’s Theorem B) does not extend to the set of Cournot-Nash
allocations, thereby breaking the symmetry of Theorem 1. In the next sec-
tion, we further investigate the relation between the core and the sets of
Walras and Cournot-Nash allocations.

4 Some examples, a proposition, and a theorem

In the following example (Example 1 in Shitovitz (1973)), the market of
commodity 2 is monopolistic. The example shows that Theorems 2 and
3 cannot be extended to this case as |A| = 1, |A1| = 1, and µ(τ11)

µ(T1)
= 1.

Moreover, in this market configuration, the set of Walras and Cournot-Nash
allocations are disjoint as there is no Cournot-Nash equilibrium.

Example 1. Consider the following specification of the exchange economy
satisfying Assumptions 1, 2, and 3. T0 = [0, 1], A1 = {2}, T0 is taken with
Lebesgue measure, µ(2) = 1, w(t) = (4, 0), ut(x) =

√
x1 +

√
x2, for each

t ∈ T0, w(2) = (0, 4), u2(x) =
√
x1 +

√
x2. Then, there is an allocation in

the core, which is not a Walras allocation, and there is no Cournot-Nash
allocation.

Proof. The uniqueWalras equilibrium is the pair (p∗,x∗), where (p∗1, p∗2) =
(1, 1), (x∗1(t),x∗2(t)) = (2, 2), for each t ∈ T0, (x

∗1(2),x∗2(2)) = (2, 2). As
shown by Shitovitz (1973), the allocation x̃ such that (x̃1(t), x̃2(t)) = (1, 1),
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for each t ∈ T0, (x̃
1(2), x̃2(2)) = (3, 3) is in the core but it is not a Walras al-

location. Finally, it is straightforward to show that there is no Cournot-Nash
allocation.

In the following example, all traders have the same utility function as
in Example 1 but a competitive fringe competes with the monopolist in
the market for commodity 2. The core coincides with the set of Walras
allocations as the assumptions of Theorem 2 are satisfied but no Cournot-
Nash allocation is in the core.

Example 2. Consider the following specification of the exchange economy
satisfying Assumptions 1, 2, and 3. T0 = [0, 1], A1 = {2}, T0 is taken
with Lebesgue measure, µ(2) = 1, w(t) = (4, 0), ut(x) =

√
x1 +

√
x2, for

each t ∈ [0, 12 ], w(t) = (0, 4), ut(x) =
√
x1 +

√
x2, for each t ∈ [12 , 1],

w(2) = (0, 4), u2(x) =
√
x1 +

√
x2. Then, there is a unique allocation

in the core which is also the unique Walras allocation but which is not a
Cournot-Nash allocation.

Proof. The uniqueWalras equilibrium is the pair (p∗,x∗), where (p∗1, p∗2) =
(
√
3, 1), (x∗1(t),x∗2(t)) = ( 4√

3+1
, 12√

3+1
), for each t ∈ [0, 12 ], (x

∗1(t),x∗2(t)) =

( 4√
3+3

, 4
√
3√

3+1
), for each t ∈ [12 , 1], (x

∗1(2),x∗2(2)) = ( 4√
3+3

, 4
√
3√

3+1
). Then, by

Theorem 2, the unique Walras allocation is also the unique allocation in the
core as |A| = 1, |A1| = 1, and µ(τ11)

µ(T1)
< 1. Suppose that x∗ is a Cournot-Nash

allocation. Then, there is a strategy selection b∗ which is a Cournot-Nash
equilibrium and which is such that x∗(t) = x(t,b∗(t), p(b∗)), for each t ∈ T .

But then, b∗ must be such that b∗
12(t) =

4
√
3√

3+1
, for each t ∈ [0, 12 ], b

∗
21(t) =

4√
3+1

, for each t ∈ [12 , 1], b
∗
21(2) =

4√
3+1

. However, it is straightforward to

verify that b∗(2) /∈ argmax{u2(x(t,b∗ \ b(2), p(b∗ \ b(2)))) : b ∈ B(2)}, a
contradiction. Then, the unique Walras allocation is not a Cournot-Nash
allocation.

In the following example, all traders have the same utility function as in
Example 1 but there are two oligopolists of the same type in the market for
commodity 2. The core coincides with the set of Walras allocations as the
assumptions of Theorem 3 are satisfied but no Cournot-Nash allocation is
in the core.

Example 3. Consider the following specification of the exchange economy
satisfying Assumptions 1, 2, and 3. T0 = [0, 1], A1 = {2, 3}, T0 is taken with
Lebesgue measure, µ(2) = µ(3) = 1, w(t) = (4, 0), ut(x) =

√
x1 +

√
x2, for

8



each t ∈ T0, w(2) = w(3) = (0, 4), u2(x) = u3(x) =
√
x1+

√
x2. Then, there

is a unique allocation in the core which is also the unique Walras allocation
but which is not a Cournot-Nash allocation.

Proof. The uniqueWalras equilibrium is the pair (p∗,x∗), where (p∗1, p∗2) =
(
√
2, 1), (x∗1(t),x∗2(t)) = ( 4√

2+1
, 8√

2+1
), for each t ∈ T0, (x

∗1(2),x∗2(2)) =

(x∗1(3),x∗2(3)) = ( 4√
2+2

, 4
√
2√

2+1
). Then, by Theorem 3, the unique Walras

allocation is also the unique allocation in the core as |A| = 1 and |A1| = 2.
Suppose that x∗ is a Cournot-Nash allocation. Then, there is a strategy
selection b∗ which is a Cournot-Nash equilibrium and which is such that
x∗(t) = x(t,b∗(t), p(b∗)), for each t ∈ T . But then, b∗ must be such that

b∗
12(t) = 4

√
2√

2+1
, for each t ∈ T0, b∗

21(2) = b∗
21(3) = 4√

2+1
. However, it

is straightforward to verify that b∗(2) /∈ argmax{u2(x(t,b∗ \ b(2), p(b∗ \
b(2)))) : b ∈ B(2)}, a contradiction. Then, the unique Walras allocation is
not a Cournot-Nash allocation.

In Examples 2 and 3, there are atoms who demand a strictly positive
amount of both commodities at a Walras equilibrium and the sets of Walras
and Cournot-Nash allocations are disjoint. The following proposition gener-
alizes those examples providing a necessary condition for a Walras allocation
to be a Cournot-Nash allocation. In order to state the proposition, we need
a further assumption on traders’ utility functions.

Assumption 4. ut : R
2
+ → R is continuously differentiable, for each t ∈

T \ T0.

Proposition. Under Assumptions 1, 2, 3, and 4, if the pair (p∗,x∗) is a
Walras equilibrium such that x∗(τ) À 0, for an atom τ ∈ T \ T0, then x∗ is
not a Cournot-Nash allocation.

Proof. Suppose that the pair (p∗,x∗) is a Walras equilibrium such that
x∗(τ) À 0, for an atom τ ∈ T \T0. Moreover, suppose that x∗ is a Cournot-
Nash allocation. Then, there is a strategy selection b∗ such that x∗(t) =
x(t,b∗(t), p(b∗)), for each t ∈ T , where b∗ is a Cournot-Nash equilibrium.
Since, given a trader t ∈ T , p(b∗)x∗(t) = p(b∗)w(t) and p∗ is the unique
price vector such that p∗x∗(t) = p∗w(t), p∗ = p(b∗). Consider the atom
τ ∈ T \ T0 and assume, without loss of generality, that w1(τ) = 0 and
w2(τ) > 0. At a Cournot-Nash equilibrium, for the atom τ , the marginal
rate of substitution must be equal to the marginal rate at which he can trade
off commodity 1 for commodity 2 (see Okuno et al. (1980)). Moreover, at a
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Walras equilibrium, the marginal rate of substitution must be equal to the
relative price of commodity 1 in terms of commodity 2. These two conditions
are expressed by the following equations:

dx2

dx1
= −p∗1

p∗2
b∗

21

b∗
21 − b∗

21(τ)µ(τ)
= −p∗1

p∗2
.

Then, we must have b∗
21(τ) = 0. But then, (x∗1(τ),x∗2(τ)) = (0,w2(τ)), a

contradiction. Hence, x∗ is not a Cournot-Nash allocation.

The following example differs from Example 2 only in that the monopo-
list and the competitive fringe have quasi-linear utility functions. It shows
that, under the assumptions of Theorem 2, the converse of the Proposi-
tion does not hold. At the unique Walras equilibrium, both the monopolist
and the competitive fringe demand a null amount of commodity 2 and this
unique Walras allocation is also the unique allocation in the core but it is
not a Cournot-Nash allocation.

Example 4. Consider the following specification of the exchange economy
satisfying Assumptions 1, 2, and 3. T0 = [0, 1], A1 = {2}, T0 is taken
with Lebesgue measure, µ(2) = 1, w(t) = (4, 0), ut(x) =

√
x1 +

√
x2, for

each t ∈ [0, 12 ], w(t) = (0, 4), ut(x) =
√
x1 + 1

10x
2, for each t ∈ [12 , 1],

w(2) = (0, 4), u2(x) =
√
x1 + 1

10x
2. Then, there is a unique allocation

in the core which is also the unique Walras allocation but which is not a
Cournot-Nash allocation.

Proof. The uniqueWalras equilibrium is the pair (p∗,x∗), where (p∗1, p∗2) =
(
√
21+3
2 , 1), (x∗1(t),x∗2(t)) = ( 8√

21+5
, 12), for each t ∈ [0, 12 ], (x

∗1(t),x∗2(t)) =
( 8√

21+3
, 0), for each t ∈ [12 , 1], (x

∗1(2),x∗2(2)) = ( 8√
21+3

, 0). Then, by The-

orem 2, the unique Walras allocation is also the unique allocation in the
core as |A| = 1, |A1| = 1, and µ(τ11)

µ(T1)
< 1. Suppose that x∗ is a Cournot-

Nash allocation. Then, there is a strategy selection b∗ which is a Cournot-
Nash equilibrium and which is such that x∗(t) = x(t,b∗(t), p(b∗)), for each
t ∈ T . But then, b∗ must be such that b∗

12(t) =
4
√
21+12√
21+5

, for each t ∈ [0, 12 ],

b∗
21(t) = 4, for each t ∈ [12 , 1], b

∗
12(2) = 4. However, it is straightforward

to verify that b∗(2) /∈ argmax{u2(x(t,b∗ \ b(2), p(b∗ \ b(2)))) : b ∈ B(2)},
a contradiction. Then, the unique Walras allocation is not a Cournot-Nash
allocation.

The following example differs from Example 3 only in that the two
oligopolists have quasi-linear utility functions. It shows that, under the as-
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sumptions of Theorem 3, the converse of the Proposition does not hold. At
the unique Walras equilibrium, the two oligopolists demand a null amount of
commodity 2 and this unique Walras allocation is also the unique allocation
in the core but it is not a Cournot-Nash allocation.

Example 5. Consider the following specification of the exchange economy
satisfying Assumptions 1, 2, and 3. T0 = [0, 1], A1 = {2, 3}, T0 is taken with
Lebesgue measure, µ(2) = µ(3) = 1, w(t) = (4, 0), ut(x) =

√
x1 +

√
x2, for

each t ∈ T0, w(2) = w(3) = (0, 4), u2(x) = u3(x) =
√
x1+ 1

10x
2. Then, there

is a unique allocation in the core which is also the unique Walras allocation
but which is not a Cournot-Nash allocation.

Proof. The uniqueWalras equilibrium is the pair (p∗,x∗), where (p∗1, p∗2) =
(
√
3 + 1, 1), (x∗1(t),x∗2(t)) = ( 4√

3+2
, 8), for each t ∈ T0, (x

∗1(2),x∗2(2)) =
(x∗1(3),x∗2(3)) = ( 4√

3+1
, 0). Then, by Theorem 3, the unique Walras al-

location is also the unique allocation in the core as |A| = 1 and |A1| = 2.
Suppose that x∗ is a Cournot-Nash allocation. Then, there is a strategy
selection b∗ which is a Cournot-Nash equilibrium and which is such that
x∗(t) = x(t,b∗(t), p(b∗)), for each t ∈ T . But then, b∗ must be such that

b∗
12(t) =

4
√
3+4√
3+2

, for each t ∈ T0, b
∗
21(2) = b∗

21(3) = 4. However, it is straight-

forward to verify that b∗(2) /∈ argmax{u2(x(t,b∗ \ b(2), p(b∗ \ b(2)))) : b ∈
B(2)}, a contradiction. Then, the unique Walras allocation is not a Cournot-
Nash allocation.

We now address the question whether, in mixed exchange economies, an
equivalence, or at least a nonempty intersection, between the sets of Walras
and Cournot-Nash allocations may hold. The following example differs form
Example 4 only for the lower “weight” of commodity 2 for traders who have
quasi-linear utility functions. At the unique Walras equilibrium, both the
monopolist and the competitive fringe demand a null amount of commodity
2 and this unique Walras allocation is also the unique allocation in the core
and the unique Cournot-Nash allocation.

Example 6. Consider the following specification of the exchange economy
satisfying Assumptions 1, 2, and 3. T0 = [0, 1], A1 = {2}, T0 is taken with
Lebesgue measure, µ(2) = 1, w(t) = (4, 0), ut(x) =

√
x1 +

√
x2, for each

t ∈ [0, 12 ], w(t) = (0, 4), ut(x) =
√
x1+ 1

30x
2, for each t ∈ [12 , 1], w(2) = (0, 4),

u2(x) =
√
x1 + 1

30x
2. Then, there is a unique allocation in the core which is

also the unique Walras allocation and the unique Cournot-Nash allocation.

Proof. The uniqueWalras equilibrium is the pair (p∗,x∗), where (p∗1, p∗2) =
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(
√
21+3
2 , 1), (x∗1(t),x∗2(t)) = ( 8√

21+5
, 12), for each t ∈ [0, 12 ], (x

∗1(t),x∗2(t)) =
( 8√

21+3
, 0), for each t ∈ [12 , 1], (x

∗1(2),x∗2(2)) = ( 8√
21+3

, 0). Then, by The-

orem 2, the unique Walras allocation is also the unique allocation in the
core as |A| = 1, |A1| = 1, and µ(τ11)

µ(T1)
< 1. Moreover, the strategy se-

lection b∗, where b∗
12(t) = 4

√
21+12√
21+5

, for each t ∈ [0, 12 ], b∗
21(t) = 4, for

each t ∈ [12 , 1], b∗
21(2) = 4, is the unique Cournot-Nash equilibrium and

x∗(t) = x(t,b∗(t), p(b∗)), for each t ∈ T . Then, the unique Walras alloca-
tion is also the unique Cournot-Nash allocation.

The following example differs from Example 5 only for the lower “weight”
of commodity 2 for traders who have quasi-linear utility functions. At the
unique Walras equilibrium, the two oligopolists demand a null amount of
commodity 2 and this unique Walras allocation is also the unique allocation
in the core and the unique Cournot-Nash allocation.

Example 7. Consider the following specification of the exchange economy
satisfying Assumptions 1, 2, and 3. T0 = [0, 1], A1 = {2, 3}, T0 is taken with
Lebesgue measure, µ(2) = µ(3) = 1, w(t) = (4, 0), ut(x) =

√
x1 +

√
x2, for

each t ∈ T0, w(2) = w(3) = (0, 4), u2(x) = u3(x) =
√
x1+ 1

30x
2. Then, there

is a unique allocation in the core which is also the unique Walras allocation
and the unique Cournot-Nash allocation.

Proof. The uniqueWalras equilibrium is the pair (p∗,x∗), where (p∗1, p∗2) =
(
√
3 + 1, 1), (x∗1(t),x∗2(t)) = ( 4√

3+2
, 8), for each t ∈ T0, (x

∗1(2),x∗2(2)) =
(x∗1(3),x∗2(3)) = ( 4√

3+1
, 0). Then, by Theorem 3, the unique Walras al-

location is also the unique allocation in the core as |A| = 1 and |A1| = 2.

Moreover, the strategy selection b∗, where b∗
12(t) =

4
√
3+4√
3+2

, for each t ∈ T0,

b∗
21(2) = b∗

21(3) = 4, is the unique Cournot-Nash equilibrium and x∗(t) =
x(t,b∗(t), p(b∗)), for each t ∈ T . Then, the unique Walras allocation is also
the unique Cournot-Nash allocation.

Examples 6 and 7 differ from Examples 4 and 5 as, in the latter, all
atoms who hold commodity 2 demand a null amount of this commodity at
a Walras equilibrium but not at a Cournot-Nash equilibrium whereas, in
the former, they also demand a null amount of commodity 2 at a Cournot-
Nash equilibrium. The following theorem generalizes Examples 6 and 7 as
it shows that demanding a null amount of one of the two commodities by
all the atoms is a necessary and sufficient condition for a Cournot-Nash
allocation to be a Walras allocation.

12



Theorem 4. Under Assumptions 1, 2, 3, and 4, let b̂ be a Cournot-Nash
equilibrium and let p̂ = p(b̂) and x̂(t) = x(t, b̂(t), p(b̂)), for each t ∈ T .
Then, the pair (p̂, x̂) is a Walras equilibrium if and only if x̂1(t) = 0 or
x̂2(t) = 0, for each t ∈ T \ T0.

Proof. Let b̂ be a Cournot-Nash equilibrium and let p̂ = p(b̂) and x̂(t) =
x(t, b̂(t), p(b̂)), for each t ∈ T . Suppose that the pair (p̂, x̂) is a Walras
equilibrium. Moreover, suppose that x̂(τ) À 0, for an atom τ ∈ T\T0. Then,
x̂ is not a Cournot-Nash allocation, by the Proposition, a contradiction.
Hence, x̂1(t) = 0 or x̂2(t) = 0, for each t ∈ T \ T0. Conversely, suppose that
x̂1(t) = 0 or x̂2(t) = 0, for each t ∈ T \T0. Consider an atom τ ∈ T \T0 and
assume, without loss of generality, that w1(τ) = 0 and w2(τ) > 0. Consider
the case where x̂1(τ) = 0. Then, b̂21(τ) = 0 and x̂(τ) = (0,w2(τ)). We
have that p̂x̂(τ) = p̂w(τ) since

p̂1x̂1(τ) + p̂2x̂2(τ) = p̂10 + p̂2(w2(τ)− 0) = p̂2w2(τ).

Let x̂2(x1) be a function such that uτ (x
1, x̂2(x1)) ≡ uτ (x̂(τ)), for each 0 ≤

x1 ≤ w2(τ) p̂
2

p̂1
. We have that

∂uτ (x̂(τ))

∂x1

b̂21 − b̂21(τ)

b̂21

p̂2

p̂1
− ∂uτ (x̂(τ))

∂x2
≤ 0

as b̂21(τ) = 0. Then,

∂uτ (x̂(τ))

∂x1

p̂2

p̂1
− ∂uτ (x̂(τ))

∂x2
≤ 0

as b̂21−0

b̂21

= 1. But then, dx̂2(0)
dx1 ≥ − p̂1

p̂2
. Consider the case where dx̂2(0)

dx1 =

− p̂1

p̂2
. Then, uτ (x̂(τ)) ≥ uτ (y) for all y ∈ {x ∈ R2

+ : p̂x = p̂w(τ)}, as uτ (·)
is quasi-concave, by Assumption 2. Consider now the case where dx̂2(0)

dx1 >

− p̂1

p̂2
. Then, dx̂2(x1)

dx1 > − p̂1

p̂2
, for each 0 ≤ x1 ≤ w2(τ) p̂

2

p̂1
, as uτ (·) is quasi-

concave, by Assumption 2. Suppose that there exists a commodity bundle
x̃ ∈ {x ∈ R2

+ : p̂x = p̂w(τ)} such that uτ (x̃) > uτ (x̂(τ)). Then, x̃
2 > x̂2(x̃1)

as uτ (·) is strongly monotone, by Assumption 2. But then, by the Mean
Value Theorem, there exists some x̄1 such that 0 < x̄1 < x̃1 and such that

dx̂2(x̄1)

dx1
=

x̂2(0)− x̂2(x̃1)

0− x̃1
< − p̂1

p̂2
,

13



a contradiction. Therefore, uτ (x̂(τ)) ≥ uτ (y) for all y ∈ {x ∈ R2
+ : p̂x =

p̂w(τ)}.
Consider now the case where x̂2(τ) = 0. Then, b̂21(τ) = w2(τ) and x̂(τ) =

(w2(τ) p̂
2

p̂1
, 0). We have that p̂x̂(τ) = p̂w(τ) since

p̂1x̂1(τ) + p̂2x̂2(τ) = p̂1w2(τ)
p̂2

p̂1
+ p̂2(w2(τ)−w2(τ)) = p̂2w2(τ).

Let x̂2(x1) be a function such that uτ (x
1, x̂2(x1)) ≡ uτ (x̂(τ)), for each 0 ≤

x1 ≤ w2(τ) p̂
2

p̂1
. We have that

∂uτ (x̂(τ))

∂x1

b̂21 − b̂21(τ)

b̂21

p̂2

p̂1
− ∂uτ (x̂(τ))

∂x2
≥ 0

as b̂21(τ) = w2(τ). Then,

∂uτ (x̂(τ))

∂x1

p̂2

p̂1
− ∂uτ (x̂(τ))

∂x2
> 0

as b̂21−w2(τ)

b̂21

< 1. But then, dx̂2(x1)
dx1 < − p̂1

p̂2
, for each 0 ≤ x1 ≤ w2(τ) p̂

2

p̂1
,

as uτ (·) is quasi-concave, by Assumption 2. Suppose that there exists a
commodity bundle x̃ ∈ {x ∈ R2

+ : p̂x = p̂w(τ)} such that uτ (x̃) > uτ (x̂(τ)).
Then, x̃2 > x̂2(x̃1) as uτ (·) is strongly monotone, by Assumption 2. But
then, by the Mean Value Theorem, there exists some x̄1 such that x̃1 < x̄1 <

w2(τ) p̂
2

p̂1
and such that

dx̂2(x̄1)

dx1
=

x̂2(x̃1)− x̂2(w2(τ) p̂
2

p̂1
)

x̃1 −w2(τ) p̂
2

p̂1

> − p̂1

p̂2
,

a contradiction. Therefore, uτ (x̂(τ)) ≥ uτ (y) for all y ∈ {x ∈ R2
+ : p̂x =

p̂w(τ)}. We then conclude that p̂x̂(t) = p̂w(t) and ut(x̂(t)) ≥ ut(y) for
all y ∈ {x ∈ Rl

+ : p̂x = p̂w(t)}, for each t ∈ T \ T0. Moreover, it is
straightforward to show (see, for instance, Proposition 3 in Busetto, Codog-
nato, and Ghosal (2013)) that p̂x̂(t) = p̂w(t) and ut(x̂(t)) ≥ ut(y) for all
y ∈ {x ∈ R2

+ : p̂x = p̂w(t)}, for each t ∈ T0. Hence, the pair (p̂, x̂) is a
Walras equilibrium.
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5 Conclusion

In this paper, we have reconsidered, in the framework of bilateral oligopoly,
the problem raised by Okuno et al. (1980) about the noncooperative founda-
tion of oligopolistic behavior in general equilibrium. We can now summarize
the implications of the previous analysis. The condition which requires that
the atoms are not “too” big, introduced by Gabszewicz and Mertens (1971),
is not necessary for the equivalence between the core and the set of Walras al-
locations, as shown by Theorem 3, but it is sufficient for this equivalence, by
Theorem 2; moreover, it is neither necessary nor sufficient for a nonempty
intersection between the sets of Walras and Cournot-Nash allocations as
shown, respectively, by Example 7 and Example 4. The condition which
requires that there are only atoms of the same type, introduced by Shitovitz
(1973), is not necessary for the equivalence between the core and the set of
Walras allocations, as shown by Theorem 2, but it is sufficient for this equiv-
alence, by Theorem 3; moreover, it is neither necessary nor sufficient for a
nonempty intersection between the sets of Walras and Cournot-Nash alloca-
tions as shown, respectively, by Example 6 and Example 5. Theorem 4 states
that the condition which characterizes the nonempty intersection of the sets
of Walras and Cournot-Nash allocations requires that each atom demands
a null amount of one commodity. Moreover, Examples 6 and 7 show that
this characterization condition is non-vacuous. We leave as an open problem
for further research which assumptions on traders’ size, endowments, and
preferences imply this characterization condition. This analysis could help
to understand more deeply which are the differences between atoms’ Wal-
rasian behavior in a cooperative and in a noncooperative framework. Some
further research should also be devoted to the possibility of generalizing the
results achieved in this paper to an exchange economy with more than two
commodities.
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